Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Diverse high-pressure chemistry in Y-NH₃BH₃ and Y–paraffin oil systems

Titelangaben

Aslandukova, Alena ; Aslandukov, Andrii ; Laniel, Dominique ; Yin, Yuqing ; Akbar, Fariia Iasmin ; Bykov, Maxim ; Fedotenko, Timofey ; Glazyrin, Konstantin ; Pakhomova, Anna ; Garbarino, Gaston ; Bright, Eleanor Lawrence ; Wright, Jonathan ; Hanfland, Michael ; Chariton, Stella ; Prakapenka, Vitali ; Dubrovinskaia, Natalia ; Dubrovinsky, Leonid:
Diverse high-pressure chemistry in Y-NH₃BH₃ and Y–paraffin oil systems.
In: Science Advances. Bd. 10 (2024) Heft 11 . - eadl5416.
ISSN 2375-2548
DOI: https://doi.org/10.1126/sciadv.adl5416

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

The yttrium-hydrogen system has gained attention because of near-ambient temperature superconductivity reports in yttrium hydrides at high pressures. We conducted a study using synchrotron single-crystal x-ray diffraction (SCXRD) at 87 to 171 GPa, resulting in the discovery of known (two YH3 phases) and five previously unknown yttrium hydrides. These were synthesized in diamond anvil cells by laser heating yttrium with hydrogen-rich precursors?ammonia borane or paraffin oil. The arrangements of yttrium atoms in the crystal structures of new phases were determined on the basis of SCXRD, and the hydrogen content estimations based on empirical relations and ab initio calculations revealed the following compounds: Y3H11, Y2H9, Y4H23, Y13H75, and Y4H25. The study also uncovered a carbide (YC2) and two yttrium allotropes. Complex phase diversity, variable hydrogen content in yttrium hydrides, and their metallic nature, as revealed by ab initio calculations, underline the challenges in identifying superconducting phases and understanding electronic transitions in high-pressure synthesized materials. Single-crystal XRD supported by theoretical calculations reveals the formation of seven yttrium hydrides at high pressures.The yttrium-hydrogen system has gained attention because of near-ambient temperature superconductivity reports in yttrium hydrides at high pressures. We conducted a study using synchrotron single-crystal x-ray diffraction (SCXRD) at 87 to 171 GPa, resulting in the discovery of known (two YH3 phases) and five previously unknown yttrium hydrides. These were synthesized in diamond anvil cells by laser heating yttrium with hydrogen-rich precursors?ammonia borane or paraffin oil. The arrangements of yttrium atoms in the crystal structures of new phases were determined on the basis of SCXRD, and the hydrogen content estimations based on empirical relations and ab initio calculations revealed the following compounds: Y3H11, Y2H9, Y4H23, Y13H75, and Y4H25. The study also uncovered a carbide (YC2) and two yttrium allotropes. Complex phase diversity, variable hydrogen content in yttrium hydrides, and their metallic nature, as revealed by ab initio calculations, underline the challenges in identifying superconducting phases and understanding electronic transitions in high-pressure synthesized materials. Single-crystal XRD supported by theoretical calculations reveals the formation of seven yttrium hydrides at high pressures.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Fachgruppe Materialwissenschaften > Lehrstuhl Kristallographie
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Fachgruppe Materialwissenschaften > Professur Materialphysik und Technologie bei extremen Bedingungen
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Fachgruppe Materialwissenschaften > Professur Materialphysik und Technologie bei extremen Bedingungen > Professur Materialphysik und Technologie bei extremen Bedingungen - Univ.-Prof. Dr. Natalia Doubrovinckaia
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 530 Physik
Eingestellt am: 18 Mär 2024 10:13
Letzte Änderung: 18 Mär 2024 10:13
URI: https://eref.uni-bayreuth.de/id/eprint/88892