Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Synthetic Object Recognition Dataset for Industries

Titelangaben

Abou Akar, Chafic ; Tekli, Jimmy ; Jess, Daniel ; Khoury, Mario ; Kamradt, Marc ; Guthe, Michael:
Synthetic Object Recognition Dataset for Industries.
In: 2022 35th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI) : Proceedings. - Piscataway, NJ : IEEE , 2022 . - S. 150-155
ISBN 978-1-6654-5385-1
DOI: https://doi.org/10.1109/SIBGRAPI55357.2022.9991784

Abstract

Smart robots in factories highly depend on Computer Vision (CV) tasks, e.g. object detection and recognition, to perceive their surroundings and react accordingly. These CV tasks can be performed after training deep learning (DL) models on large annotated datasets. In an industrial setting, acquiring and annotating such datasets is challenging because it is time-consuming, prone to human error, and limited by several privacy and security regulations. In this study, we propose a synthetic industrial dataset for object detection purposes created using NVIDIA Omniverse. The dataset consists of S industrial assets in 32 scenarios and 200,000 photo-realistic rendered images that are annotated with accurate bounding boxes. For evaluation purposes, multiple object detectors were trained with synthetic data to infer on real images captured inside a factory. Accuracy values higher than 50 and up to 100 were reported for most of the considered assets.

Weitere Angaben

Publikationsform: Aufsatz in einem Buch
Begutachteter Beitrag: Ja
Keywords: Training; Shape; Service robots; Computational modeling; Object detection; Cameras; Production facilities
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik > Professur Angewandte Informatik V > Professur Angewandte Informatik V - Univ.-Prof. Dr. Michael Guthe
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
Eingestellt am: 07 Mai 2024 07:36
Letzte Änderung: 07 Mai 2024 08:31
URI: https://eref.uni-bayreuth.de/id/eprint/89497