Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Adaptable Polyurethane Networks Containing Tertiary Amines as Intrinsic Bond Exchange Catalyst

Title data

Schwarzer, Lars ; Agarwal, Seema:
Adaptable Polyurethane Networks Containing Tertiary Amines as Intrinsic Bond Exchange Catalyst.
In: Macromolecular Chemistry and Physics. (2024) . - 2400072.
ISSN 1521-3935
DOI: https://doi.org/10.1002/macp.202400072

Abstract in another language

Vitrimers exhibit unique properties, such as thermal recyclability akin to thermoplastics, while structurally mirroring thermosets in terms of strength, durability, and chemical resistance. However, a significant limitation of these materials is their dependence on an external catalyst. Consequently, this research aims to develop vitrimer materials that incorporate an intrinsic catalyst, thus maintaining excellent thermomechanical properties and recyclability. Polyaddition polymerization is employed to synthesize the desired polymer, incorporating a self-synthesized tertiary amine unit, (bis(2-hydroxyethyl)-3,3′-((2-(dimethylamino)ethyl)azanediyl)dipropanoate) (N-diol), as an internal catalyst for transcarbamoylation and potential transesterification reactions. The resulting polymer, with a gel content of 97% and a glass transition temperature of 29 °C, is fabricated into test samples for comprehensive thermal and mechanical evaluations. The material demonstrates an initial Young's modulus of 555 MPa, retaining 81% of this value after two recycling processes. Additionally, using stress relaxation analysis (SRA), a topology freezing temperature of 82 °C, indicative of the characteristic Arrhenius-like relaxation behavior, is identified with a bond exchange activation energy of 163 kJ mol−1.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Macromolecular Chemistry II
Profile Fields > Advanced Fields > Polymer and Colloid Science
Research Institutions > Affiliated Institutes > Bavarian Polymer Institute (BPI)
Graduate Schools > Bayreuth Graduate School of Mathematical and Natural Sciences (BayNAT) > Polymer Science
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 540 Chemistry
Date Deposited: 17 Jun 2024 07:07
Last Modified: 17 Jun 2024 08:27
URI: https://eref.uni-bayreuth.de/id/eprint/89768