Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Manganese-based A-site high-entropy perovskite oxide for solar thermochemical hydrogen production

Title data

Liu, Cijie ; Zhang, Dawei ; Li, Wei ; Trindell, Jamie A. ; King, Keith A. ; Bishop, Sean R. ; Sugar, Joshua D. ; McDaniel, Anthony H. ; Smith, Andrew I. ; Salinas, Perla A. ; Coker, Eric N. ; Clauser, Arielle L. ; Velayutham, Murugesan ; Neuefeind, Joerg C. ; Yang, Jingjing ; De Santiago, Héctor A. ; Ma, Liang ; Wang, Yi ; Wang, Qiang ; Li, Wenyuan ; Wang, Qingsong ; Li, Qingyuan ; Tian, Hanchen ; Ngan Tran, Ha Ngoc ; Li, Xuemei ; Robinson, Brandon ; Deibel, Angela M. ; Collins, Gregory ; Thieu, Nhat Anh ; Hu, Jianli ; Khramtsov, Valery V. ; Luo, Jian ; Liu, Xingbo:
Manganese-based A-site high-entropy perovskite oxide for solar thermochemical hydrogen production.
In: Journal of Materials Chemistry A. Vol. 12 (2024) Issue 7 . - pp. 3910-3922.
ISSN 2050-7496
DOI: https://doi.org/10.1039/D3TA03554A

Official URL: Volltext

Abstract in another language

Non-stoichiometric perovskite oxides have been studied as a new family of redox oxides for solar thermochemical hydrogen (STCH) production owing to their favourable thermodynamic properties. However, conventional perovskite oxides suffer from limited phase stability and kinetic properties, and poor cyclability. Here, we report a strategy of introducing A-site multi-principal-component mixing to develop a high-entropy perovskite oxide, (La1/6Pr1/6Nd1/6Gd1/6Sr1/6Ba1/6)MnO3 (LPNGSBMn), which shows desirable thermodynamic and kinetics properties as well as excellent phase stability and cycling durability. LPNGSBMn exhibits enhanced hydrogen production (∼77.5 mmol moloxide−1) compared to (La2/3Sr1/3)MnO3 (∼53.5 mmol moloxide−1) in a short 1 hour redox duration and high STCH and phase stability for 50 cycles. LPNGSBMn possesses a moderate enthalpy of reduction (252.51–296.32 kJ (mol O)−1), a high entropy of reduction (126.95–168.85 J (mol O)−1 K−1), and fast surface oxygen exchange kinetics. All A-site cations do not show observable valence changes during the reduction and oxidation processes. This research preliminarily explores the use of one A-site high-entropy perovskite oxide for STCH.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Lehrstuhl Anorganische Aktivmaterialien für elektrochemische Energiespeicher
Research Institutions > Central research institutes > Bayerisches Zentrum für Batterietechnik - BayBatt
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 500 Natural sciences
500 Science > 540 Chemistry
Date Deposited: 18 Jun 2024 11:02
Last Modified: 18 Jun 2024 11:02
URI: https://eref.uni-bayreuth.de/id/eprint/89782