Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Combining Local Range Separation and Local Hybrids : A Step in the Quest for Obtaining Good Energies and Eigenvalues from One Functional

Titelangaben

Brütting, Moritz ; Bahmann, Hilke ; Kümmel, Stephan:
Combining Local Range Separation and Local Hybrids : A Step in the Quest for Obtaining Good Energies and Eigenvalues from One Functional.
In: The Journal of Physical Chemistry A. Bd. 128 (2024) Heft 26 . - S. 5212-5223.
ISSN 1520-5215
DOI: https://doi.org/10.1021/acs.jpca.4c02787

Angaben zu Projekten

Projektfinanzierung: Deutsche Forschungsgemeinschaft

Abstract

Some of the most successful exchange–correlation approximations in density functional theory are “hybrids”, i.e., they rely on combining semilocal density functionals with exact nonlocal Fock exchange. In recent years, two classes of hybrid functionals have emerged as particularly promising: range-separated hybrids on the one hand, and local hybrids on the other hand. These functionals offer the hope to overcome a long-standing “observable dilemma”, i.e., the fact that density functionals typically yield either a good description of binding energies, as obtained, e.g., in global and local hybrids, or physically interpretable eigenvalues, as obtained, e.g., in optimally tuned range-separated hybrids. Obtaining both of these characteristics from one and the same functional with the same set of parameters has been a long-standing challenge. We here discuss combining the concepts of local range separation and local hybrids as part of a constraint-guided quest for functionals that overcome the observable dilemma.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut > Lehrstuhl Theoretische Physik IV > Lehrstuhl Theoretische Physik IV - Univ.-Prof. Dr. Stephan Kümmel
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 530 Physik
Eingestellt am: 26 Aug 2024 05:47
Letzte Änderung: 26 Aug 2024 05:47
URI: https://eref.uni-bayreuth.de/id/eprint/90258