Title data
Weber, Melina ; Bretschneider, Felix ; Kreger, Klaus ; Greiner, Andreas ; Schmidt, Hans-Werner:
Mimicking Cacti Spines via Hierarchical Self‐Assembly for Water Collection and Unidirectional Transport.
In: Advanced Materials Interfaces.
Vol. 11
(2024)
Issue 29
.
- 2400101.
ISSN 2196-7350
DOI: https://doi.org/10.1002/admi.202400101
Abstract in another language
Nature utilizes bottom-up approaches to fabricate defined structures with highly complex, anisotropic and functional features. One prominent example is cacti spines, which exhibit a hierarchically structured conical morphology with a longitudinal microstructured surface. Here, a bottom-up approach to fabricate supramolecular microstructured spines is presented by applying a self-assembly protocol. Taking advantage of the capillary forces of vertically aligned polyamide microfibers acts as the structure-directing substrate for site-specific self-assembly of a specific 1,3,5-benzenetricarboxamides from the solution. The morphology of the supramolecular spines covers several hierarchical levels, ultimately resulting in a conical shape with longitudinal self-assembled microgrooves and a superhydrophilic surface. It is demonstrated that these hierarchical conical microstructures are able to transport water droplets unidirectionally.
Further data
Item Type: | Article in a journal |
---|---|
Refereed: | Yes |
Institutions of the University: | Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Macromolecular Chemistry II Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Macromolecular Chemistry II > Chair Macromolecular Chemistry II - Univ.-Prof. Dr. Andreas Greiner Profile Fields > Advanced Fields > Polymer and Colloid Science |
Result of work at the UBT: | Yes |
DDC Subjects: | 500 Science > 540 Chemistry |
Date Deposited: | 17 Oct 2024 05:52 |
Last Modified: | 17 Oct 2024 05:52 |
URI: | https://eref.uni-bayreuth.de/id/eprint/90726 |