Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

How to Surprisingly Consider Recommendations? A Knowledge-Graph-Based Approach Relying on Complex Network Metrics

Titelangaben

Baumann, Oliver ; Nandini, Durgesh ; Rossanez, Anderson ; Schönfeld, Mirco ; dos Reis, Julio Cesar:
How to Surprisingly Consider Recommendations? A Knowledge-Graph-Based Approach Relying on Complex Network Metrics.
2024
Veranstaltung: 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (KEOD) , 17.-19. Nov. 2024 , Porto, Portugal.
(Veranstaltungsbeitrag: Kongress/Konferenz/Symposium/Tagung , Paper )
DOI: https://doi.org/10.5220/0012936100003838

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Africa Multiple Cluster of Excellence at the University of Bayreuth
EXC 2052/1 – 390713894

Projektfinanzierung: Deutsche Forschungsgemeinschaft

Abstract

Traditional recommendation proposals, including content-based and collaborative filtering, usually focus on similarity between items or users. Existing approaches lack ways of introducing unexpectedness into recommendations, prioritizing globally popular items over exposing users to unforeseen items. This investigation aims to design and evaluate a novel layer on top of recommender systems suited to incorporate relational information and rerank items with a user-defined degree of surprise. Surprise in recommender systems refers to the degree to which a recommendation deviates from the user’s expectations, providing an unexpected yet relatable recommendation. We propose a knowledge graph-based recommender system by encoding user interactions on item catalogs. Our study explores whether network-level metrics on knowledge graphs (KGs) can influence the degree of surprise in recommendations. We hypothesize that surprisingness correlates with specific network metrics, treating user profiles as subgraphs within a larger catalog KG. The achieved solution reranks recommendations based on their impact on structural graph metrics. Our research contributes to optimizing recommendations to reflect the network-based metrics. We experimentally evaluate our approach on two datasets of LastFM listening histories and synthetic Netflix viewing profiles. We find that reranking items based on complex network metrics leads to a more unexpected and surprising composition of recommendation lists.

Weitere Angaben

Publikationsform: Veranstaltungsbeitrag (Paper)
Begutachteter Beitrag: Ja
Keywords: Recommender Systems; Knowledge Graphs; Complex Network Metrics
Institutionen der Universität: Fakultäten > Sprach- und Literaturwissenschaftliche Fakultät > Juniorprofessur Datenmodellierung und interdisziplinäre Wissensgenerierung > Juniorprofessur Datenmodellierung und interdisziplinäre Wissensgenerierung - Juniorprof. Dr. Mirco Schönfeld
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
000 Informatik,Informationswissenschaft, allgemeine Werke > 020 Bibliotheks- und Informationswissenschaften
Eingestellt am: 26 Nov 2024 11:14
Letzte Änderung: 26 Nov 2024 11:14
URI: https://eref.uni-bayreuth.de/id/eprint/91003