Titelangaben
Xu, Wenbin ; Diesen, Elias ; He, Tianwei ; Reuter, Karsten ; Margraf, Johannes T.:
Discovering High Entropy Alloy Electrocatalysts in Vast Composition Spaces with Multiobjective Optimization.
In: Journal of the American Chemical Society.
Bd. 146
(2024)
Heft 11
.
- S. 7698-7707.
ISSN 1520-5126
DOI: https://doi.org/10.1021/jacs.3c14486
Abstract
High entropy alloys (HEAs) are a highly promising class of materials for electrocatalysis as their unique active site distributions break the scaling relations that limit the activity of conventional transition metal catalysts. Existing Bayesian optimization (BO)-based virtual screening approaches focus on catalytic activity as the sole objective and correspondingly tend to identify promising materials that are unlikely to be entropically stabilized. Here, we overcome this limitation with a multiobjective BO framework for HEAs that simultaneously targets activity, cost-effectiveness, and entropic stabilization. With diversity-guided batch selection further boosting its data efficiency, the framework readily identifies numerous promising candidates for the oxygen reduction reaction that strike the balance between all three objectives in hitherto unchartered HEA design spaces comprising up to 10 elements.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Institutionen der Universität: | Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Physikalische Chemie V - Theorie und Maschinelles Lernen Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Physikalische Chemie V - Theorie und Maschinelles Lernen > Lehrstuhl Physikalische Chemie V - Theorie und Maschinelles Lernen - Univ.-Prof. Dr. Johannes Theo Margraf |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 540 Chemie |
Eingestellt am: | 13 Jan 2025 08:09 |
Letzte Änderung: | 13 Jan 2025 08:09 |
URI: | https://eref.uni-bayreuth.de/id/eprint/91534 |