Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Operando Characterization and Molecular Simulations Reveal the Growth Kinetics of Graphene on Liquid Copper During Chemical Vapor Deposition

Titelangaben

Rein, Valentina ; Gao, Hao ; Heenen, Hendrik H. ; Sghaier, Wissal ; Manikas, Anastasios C. ; Tsakonas, Christos ; Saedi, Mehdi ; Margraf, Johannes T. ; Galiotis, Costas ; Renaud, Gilles ; Konovalov, Oleg V. ; Groot, Irene M. N. ; Reuter, Karsten ; Jankowski, Maciej:
Operando Characterization and Molecular Simulations Reveal the Growth Kinetics of Graphene on Liquid Copper During Chemical Vapor Deposition.
In: ACS Nano. Bd. 18 (2024) Heft 19 . - S. 12503-12511.
ISSN 1936-086X
DOI: https://doi.org/10.1021/acsnano.4c02070

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

In recent years, liquid metal catalysts have emerged as a compelling choice for the controllable, large-scale, and high-quality synthesis of two-dimensional materials. At present, there is little mechanistic understanding of the intricate catalytic process, though, of its governing factors or what renders it superior to growth at the corresponding solid catalysts. Here, we report on a combined experimental and computational study of the kinetics of graphene growth during chemical vapor deposition on a liquid copper catalyst. By monitoring the growing graphene flakes in real time using in situ radiation-mode optical microscopy, we explore the growth morphology and kinetics over a wide range of CH4-to-H2 pressure ratios and deposition temperatures. Constant growth rates of the flakes’ radius indicate a growth mode limited by precursor attachment, whereas methane-flux-dependent flake shapes point to limited precursor availability. Large-scale free energy simulations enabled by an efficient machine-learning moment tensor potential trained to density functional theory data provide quantitative barriers for key atomic-scale growth processes. The wealth of experimental and theoretical data can be consistently combined into a microkinetic model that reveals mixed growth kinetics that, in contrast to the situation at solid Cu, is partly controlled by precursor attachment alongside precursor availability. Key mechanistic aspects that directly point toward the improved graphene quality are a largely suppressed carbon dimer attachment due to the facile incorporation of this precursor species into the liquid surface and a low-barrier ring-opening process that self-heals 5-membered rings resulting from remaining dimer attachments.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: graphene; chemical vapor deposition; liquid metal catalysts; growth kinetics; machine-learning potentials; biased molecular dynamics; free energy simulations
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Physikalische Chemie V - Theorie und Maschinelles Lernen
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Physikalische Chemie V - Theorie und Maschinelles Lernen > Lehrstuhl Physikalische Chemie V - Theorie und Maschinelles Lernen - Univ.-Prof. Dr. Johannes Theo Margraf
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 540 Chemie
Eingestellt am: 13 Jan 2025 08:23
Letzte Änderung: 13 Jan 2025 08:23
URI: https://eref.uni-bayreuth.de/id/eprint/91542