Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Noether invariance theory for the equilibrium force structure of soft matter

Titelangaben

Hermann, Sophie ; Sammüller, Florian ; Schmidt, Matthias:
Noether invariance theory for the equilibrium force structure of soft matter.
In: Journal of Physics A: Mathematical and Theoretical. Bd. 57 (2024) Heft 17 . - 175001.
ISSN 1751-8113
DOI: https://doi.org/10.1088/1751-8121/ad3ab2

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

We give details and derivations for the Noether invariance theory that characterizes the spatial equilibrium structure of inhomogeneous classical many-body systems, as recently proposed and investigated for bulk systems (Sammüller et al 2023 Phys. Rev. Lett. 130 268203). Thereby an intrinsic thermal symmetry against a local shifting transformation on phase space is exploited on the basis of the Noether theorem for invariant variations. We consider the consequences of the shifting that emerge at second order in the displacement field that parameterizes the transformation. In a natural way the standard two-body density distribution is generated. Its second spatial derivative is thereby balanced by two further and different two-body correlation functions, which respectively introduce thermally averaged force correlations and force gradients in a systematic and microscopically sharp way into the framework. Separate exact self and distinct sum rules express this balance. We exemplify the validity of the theory on the basis of computer simulations for the Lennard–Jones gas, liquid, and crystal, the Weeks–Chandler–Andersen fluid, monatomic Molinero–Moore water at ambient conditions, a three-body-interacting colloidal gel former, the Yukawa and soft-sphere dipolar fluids, and for isotropic and nematic phases of Gay–Berne particles. We describe explicitly the derivation of the sum rules based on Noether’s theorem and also give more elementary proofs based on partial phase space integration following Yvon’s theorem.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: Noether-constrained correlations; pair correlation function;
classical statistical mechanics; YBG equation; density functional theory;
Noether’s theorem; Brownian dynamics simulations
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut > Lehrstuhl Theoretische Physik II > Lehrstuhl Theoretische Physik II - Univ.-Prof. Dr. Matthias Schmidt
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut > Lehrstuhl Theoretische Physik II
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 530 Physik
Eingestellt am: 25 Jan 2025 22:00
Letzte Änderung: 27 Jan 2025 07:21
URI: https://eref.uni-bayreuth.de/id/eprint/91704