Titelangaben
Kurz, Sascha:
Lengths of divisible codes : the missing cases.
In: Designs, Codes and Cryptography.
Bd. 92
(2024)
.
- S. 2367-2378.
ISSN 1573-7586
DOI: https://doi.org/10.1007/s10623-024-01398-7
Abstract
A linear code C over GF(q) is called Delta-divisible if the Hamming weights wt(c) of all codewords c in C are divisible by Delta. The possible effective lengths of q^r-divisible codes have been completely characterized for each prime power q and each non-negative integer r. The study of Δ divisible codes was initiated by Harold Ward. If c divides Delta but is coprime to q, then each Delta-divisible code C over GF(q) is the c-fold repetition of a Δ/c-divisible code. Here we determine the possible effective lengths of p^r-divisible codes over finite fields of characteristic p, where r is an integer but p^r is not a power of the field size, i.e., the missing cases.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Keywords: | Divisible codes; linear codes; Galois geometry |
Fachklassifikationen: | Mathematics Subject Classification Code: 51E23 (05B40) |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wirtschaftsmathematik |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 19 Feb 2025 09:40 |
Letzte Änderung: | 19 Feb 2025 09:40 |
URI: | https://eref.uni-bayreuth.de/id/eprint/92429 |