Titelangaben
Chubenko, Vladimir ; Kurz, Sascha:
Divisible minimal codes.
Bayreuth
,
2025
. - 21 S.
DOI: https://doi.org/10.15495/EPub_UBT_00007346
Dies ist die aktuelle Version des Eintrags.
Abstract
Minimal codes are linear codes where all non-zero codewords are minimal, i.e., whose support is not properly contained in the support of another codeword. The minimum possible length of such a k-dimensional linear code over GF(q) is denoted by m(k,q). Here we determine m(7,2), m(8,2), and m(9,2), as well as full classifications of all codes attaining m(k,2) for k<=7 and those attaining m(9,2). For m(11,2) and m(12,2) we give improved upper bounds. It turns out that in many cases attaining extremal codes have the property that the weights of all codewords are divisible by some constant &\Delta;>1. So, here we study the minimum lengths of minimal codes where we additionally assume that the weights of the codewords are divisible by &\Delta;.
Abstract in weiterer Sprache
Minimal codes are linear codes where all non-zero codewords are minimal, i.e., whose support is not properly contained in the support of another codeword. %he minimum possible length of such a k-dimensional linear code over GF(q) is denoted by m(k,q). Here we determine m(7,2), m(8,2), and m(9,2), as well as full classifications of all codes attaining m(k,2) for k at most 7 and those attaining m(9,2). We give improved upper bounds for m(k,2) for all k between 10 and 17. It turns out that in many cases the attaining extremal codes have the property that the weights of all codewords are divisible by some constant. So, here we study the minimum lengths of minimal codes where we additionally assume that the weights of the codewords are divisible by some given constant. As a byproduct we also give a few binary linear codes improving the best known lower bound for the minimum distance.
Weitere Angaben
Publikationsform: | Preprint, Postprint |
---|---|
Keywords: | minimal codes; divisible codes; quasi-cyclic codes; optimal codes; acute sets |
Fachklassifikationen: | Mathematics Subject Classification Code: 94B05 (51E23) |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wirtschaftsmathematik Fakultäten |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 12 Mai 2025 06:01 |
Letzte Änderung: | 12 Mai 2025 06:01 |
URI: | https://eref.uni-bayreuth.de/id/eprint/93495 |
Zu diesem Eintrag verfügbare Versionen
-
Divisible minimal codes. (deposited 09 Dec 2023 22:00)
- Divisible minimal codes. (deposited 12 Mai 2025 06:01) [Aktuelle Anzeige]