Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Highly Sensitive Electrochemical Biosensor Based on Hairy Particles with Controllable High Enzyme Loading and Activity

Title data

Milkin, Pavel ; Antony, Anila ; Cai, Hongtao ; Debevc, Antonia ; Topal, Ceyda ; Linhardt, Anne ; Synytska, Alla ; Ionov, Leonid:
Highly Sensitive Electrochemical Biosensor Based on Hairy Particles with Controllable High Enzyme Loading and Activity.
In: Advanced Functional Materials. (5 June 2025) . - 2507589.
ISSN 1616-3028
DOI: https://doi.org/10.1002/adfm.202507589

Official URL: Volltext

Abstract in another language

For the first time, a highly sensitive electrochemical biosensor based on SiO2 hairy particles grafted with polymerize poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) polymer brushes containing immobilized Laccase from Trametes versicolor (TvL) is reported. This system offers major advantages in enzyme loading, catalytic efficiency, and detection sensitivity. The biosensor achieves a high enzyme immobilization density of up to 0.57 g g−1 of polymer, while the enzymatic activity of the immobilized Laccase is enhanced 75-fold compared to the free enzyme in the buffer. These carriers are easy to handle and store, enabling reproducible sensor fabrication with well-defined enzyme content. The biosensor is tested for hydroquinone (HQ) detection, where Laccase rapidly catalyzes HQ oxidation near the electrode, generating a locally high quinone concentration. This suppresses direct HQ oxidation at the electrode surface, enhancing selectivity. The sensor demonstrates excellent analytical performance, with a sensitivity of 0.14 A·m−1, a detection limit of 0.1 µm, and a wide linear range of 0.3–750 µm—surpassing most comparable systems even without optimization. This work serves as a proof of concept and a promising platform for developing advanced biosensors. Furthermore, the approach can be adapted to other core–shell particle systems and enzyme-based electrochemical detection platforms.

Further data

Item Type: Article in a journal
Refereed: Yes
Keywords: Biosensor; Enzyme immobilization; nanoparticles
Institutions of the University: Faculties > Faculty of Engineering Science > Professor Biofabrication
Faculties > Faculty of Engineering Science > Professor Biofabrication > Professor Biofabrication - Univ.-Prof. Dr. Leonid Ionov
Faculties
Faculties > Faculty of Engineering Science
Result of work at the UBT: Yes
DDC Subjects: 500 Science
500 Science > 540 Chemistry
600 Technology, medicine, applied sciences > 600 Technology
600 Technology, medicine, applied sciences > 660 Chemical engineering
Date Deposited: 28 Jun 2025 21:00
Last Modified: 30 Jun 2025 07:43
URI: https://eref.uni-bayreuth.de/id/eprint/94008