Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Leveraging Statistical Multi-Agent Online Planning with Emergent Value Function Approximation

Titelangaben

Phan, Thomy ; Belzner, Lenz ; Gabor, Thomas ; Schmid, Kyrill:
Leveraging Statistical Multi-Agent Online Planning with Emergent Value Function Approximation.
In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS '18). - Richland,SC : International Foundation for Autonomous Agents and Multiagent Systems , 2018 . - S. 730-738 . - (ACM Conferences )
DOI: https://doi.org/10.5555/3237383.3237491

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Innovationszentrum Mobiles Internet (InnoMI)
Ohne Angabe

Projektfinanzierung: Bayerisches Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie

Abstract

Making decisions is a great challenge in distributed autonomous environments due to enormous state spaces and uncertainty. Many online planning algorithms rely on statistical sampling to avoid searching the whole state space, while still being able to make acceptable decisions. However, planning often has to be performed under strict computational constraints making online planning in multi-agent systems highly limited, which could lead to poor system performance, especially in stochastic domains. In this paper, we propose Emergent Value function Approximation for Distributed Environments (EVADE), an approach to integrate global experience into multi-agent online planning in stochastic domains to consider global effects during local planning. For this purpose, a value function is approximated online based on the emergent system behaviour by using methods of reinforcement learning. We empirically evaluated EVADE with two statistical multi-agent online planning algorithms in a highly complex and stochastic smart factory environment, where multiple agents need to process various items at a shared set of machines. Our experiments show that EVADE can effectively improve the performance of multi-agent online planning while offering efficiency w.r.t. the breadth and depth of the planning process.

Weitere Angaben

Publikationsform: Aufsatz in einem Buch
Begutachteter Beitrag: Ja
Keywords: Multi-Agent Planning; Online Planning; Value Function Approximation
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
Eingestellt am: 17 Nov 2025 08:52
Letzte Änderung: 17 Nov 2025 13:31
URI: https://eref.uni-bayreuth.de/id/eprint/95019