Titelangaben
Gabor, Thomas ; Sedlmeier, Andreas ; Kiermeier, Marie ; Phan, Thomy ; Henrich, Marcel ; Pichlmair, Monika ; Kempter, Bernhard ; Klein, Cornel ; Sauer, Horst ; Schmid, Reiner ; Wieghardt, Jan:
Scenario Co-Evolution for Reinforcement Learning on a Grid World Smart Factory Domain.
In:
Proceedings of the Genetic and Evolutionary Computation Conference. -
New York, NY, USA
: Association for Computing Machinery
,
2019
. - S. 898-906
. - (ACM Conferences
)
ISBN 978-1-4503-6111-8
DOI: https://doi.org/10.1145/3321707.3321831
Angaben zu Projekten
| Projekttitel: |
Offizieller Projekttitel Projekt-ID Innovationszentrum Mobiles Internet (InnoMI) Ohne Angabe |
|---|---|
| Projektfinanzierung: |
Bayerisches Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie |
Abstract
Adversarial learning has been established as a successful paradigm in reinforcement learning. We propose a hybrid adversarial learner where a reinforcement learning agent tries to solve a problem while an evolutionary algorithm tries to find problem instances that are hard to solve for the current expertise of the agent, causing the intelligent agent to co-evolve with a set of test instances or scenarios. We apply this setup, called scenario co-evolution, to a simulated smart factory problem that combines task scheduling with navigation of a grid world. We show that the so trained agent outperforms conventional reinforcement learning. We also show that the scenarios evolved this way can provide useful test cases for the evaluation of any (however trained) agent.
Weitere Angaben
| Publikationsform: | Aufsatz in einem Buch |
|---|---|
| Begutachteter Beitrag: | Ja |
| Keywords: | adversarial learning; automatic test generation; coevolution; evolutionary algorithms; reinforcement learning |
| Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik |
| Titel an der UBT entstanden: | Nein |
| Themengebiete aus DDC: | 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik |
| Eingestellt am: | 17 Nov 2025 09:28 |
| Letzte Änderung: | 17 Nov 2025 09:28 |
| URI: | https://eref.uni-bayreuth.de/id/eprint/95247 |

bei Google Scholar