Titelangaben
Phan, Thomy ; Belzner, Lenz ; Kiermeier, Marie ; Friedrich, Markus ; Schmid, Kyrill ; Linnhoff-Popien, Claudia:
Memory Bounded Open-Loop Planning in Large POMDPs Using Thompson Sampling.
In: Proceedings of the AAAI Conference on Artificial Intelligence.
Bd. 33
(2019)
Heft 1
.
- S. 7941-7948.
ISSN 2159-5399
DOI: https://doi.org/10.1609/aaai.v33i01.33017941
Angaben zu Projekten
| Projekttitel: |
Offizieller Projekttitel Projekt-ID Innovationszentrum Mobiles Internet (InnoMI) Ohne Angabe |
|---|---|
| Projektfinanzierung: |
Bayerisches Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie |
Abstract
State-of-the-art approaches to partially observable planning like POMCP are based on stochastic tree search. While these approaches are computationally efficient, they may still construct search trees of considerable size, which could limit the performance due to restricted memory resources. In this paper, we propose Partially Observable Stacked Thompson Sampling (POSTS), a memory bounded approach to openloop planning in large POMDPs, which optimizes a fixed size stack of Thompson Sampling bandits. We empirically evaluate POSTS in four large benchmark problems and compare its performance with different tree-based approaches. We show that POSTS achieves competitive performance compared to tree-based open-loop planning and offers a performancememory tradeoff, making it suitable for partially observable planning with highly restricted computational and memory resources.
Weitere Angaben
| Publikationsform: | Artikel in einer Zeitschrift |
|---|---|
| Begutachteter Beitrag: | Ja |
| Keywords: | Planning; Plannung under Uncertainty; POMDP |
| Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik |
| Titel an der UBT entstanden: | Nein |
| Themengebiete aus DDC: | 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik |
| Eingestellt am: | 17 Nov 2025 13:11 |
| Letzte Änderung: | 17 Nov 2025 13:11 |
| URI: | https://eref.uni-bayreuth.de/id/eprint/95250 |

bei Google Scholar