Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Memory Bounded Open-Loop Planning in Large POMDPs Using Thompson Sampling

Titelangaben

Phan, Thomy ; Belzner, Lenz ; Kiermeier, Marie ; Friedrich, Markus ; Schmid, Kyrill ; Linnhoff-Popien, Claudia:
Memory Bounded Open-Loop Planning in Large POMDPs Using Thompson Sampling.
In: Proceedings of the AAAI Conference on Artificial Intelligence. Bd. 33 (2019) Heft 1 . - S. 7941-7948.
ISSN 2159-5399
DOI: https://doi.org/10.1609/aaai.v33i01.33017941

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Innovationszentrum Mobiles Internet (InnoMI)
Ohne Angabe

Projektfinanzierung: Bayerisches Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie

Abstract

State-of-the-art approaches to partially observable planning like POMCP are based on stochastic tree search. While these approaches are computationally efficient, they may still construct search trees of considerable size, which could limit the performance due to restricted memory resources. In this paper, we propose Partially Observable Stacked Thompson Sampling (POSTS), a memory bounded approach to openloop planning in large POMDPs, which optimizes a fixed size stack of Thompson Sampling bandits. We empirically evaluate POSTS in four large benchmark problems and compare its performance with different tree-based approaches. We show that POSTS achieves competitive performance compared to tree-based open-loop planning and offers a performancememory tradeoff, making it suitable for partially observable planning with highly restricted computational and memory resources.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: Planning; Plannung under Uncertainty; POMDP
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
Eingestellt am: 17 Nov 2025 13:11
Letzte Änderung: 17 Nov 2025 13:11
URI: https://eref.uni-bayreuth.de/id/eprint/95250