Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Learning and Testing Resilience in Cooperative Multi-Agent Systems

Titelangaben

Phan, Thomy ; Gabor, Thomas ; Sedlmeier, Andreas ; Ritz, Fabian ; Kempter, Bernhard ; Klein, Cornel ; Sauer, Horst ; Schmid, Reiner ; Wieghardt, Jan ; Zeller, Marc ; Linnhoff-Popien, Claudia:
Learning and Testing Resilience in Cooperative Multi-Agent Systems.
In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS '20). - Richland, SC : International Foundation for Autonomous Agents and Multiagent Systems , 2020 . - S. 1055-1063 . - (ACM Conferences )
ISBN 978-1-4503-7518-4
DOI: https://doi.org/10.5555/3398761.3398884

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Innovationszentrum Mobiles Internet (InnoMI)
Ohne Angabe

Projektfinanzierung: Bayerisches Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie

Abstract

State-of-the-art multi-agent reinforcement learning has achieved remarkable success in recent years. The success has been mainly based on the assumption that all teammates perfectly cooperate to optimize a global objective in order to achieve a common goal. While this may be true in the ideal case, these approaches could fail in practice, since in multi-agent systems (MAS), all agents may be a potential source of failure. In this paper, we focus on resilience in cooperative MAS and propose an Antagonist-Ratio Training Scheme (ARTS) by reformulating the original target MAS as a mixed cooperative-competitive game between a group of protagonists which represent agents of the target MAS and a group of antagonists which represent failures in the MAS. While the protagonists can learn robust policies to ensure resilience against failures, the antagonists can learn malicious behavior to provide an adequate test suite for other MAS. We empirically evaluate ARTS in a cyber physical production domain and show the effectiveness of ARTS w.r.t. resilience and testing capabilities.

Weitere Angaben

Publikationsform: Aufsatz in einem Buch
Begutachteter Beitrag: Ja
Keywords: adversarial learning; learning and testing; multi-agent learning
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
Eingestellt am: 17 Nov 2025 10:17
Letzte Änderung: 17 Nov 2025 11:08
URI: https://eref.uni-bayreuth.de/id/eprint/95252