Titelangaben
Phan, Thomy ; Ritz, Fabian ; Belzner, Lenz ; Altmann, Philipp ; Gabor, Thomas ; Linnhoff-Popien, Claudia:
VAST: Value Function Factorization with Variable Agent Sub-Teams.
In: Ranzato, Marc'Aurelio ; Beygelzimer, A. ; Dauphin, Y. ; Liang, P. S. ; Vaughan, J. Wortman
(Hrsg.):
Proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS 2021). -
Red Hook, NY
: Curran Associates, Inc.
,
2021
. - S. 24018-24032
. - (Advances in Neural Information Processing Systems
; 34
)
ISBN 978-1-7138-4539-3
Angaben zu Projekten
| Projekttitel: |
Offizieller Projekttitel Projekt-ID Innovationszentrum Mobiles Internet (InnoMI) Ohne Angabe |
|---|---|
| Projektfinanzierung: |
Bayerisches Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie |
Abstract
Value function factorization (VFF) is a popular approach to cooperative multi-agent reinforcement learning in order to learn local value functions from global rewards. However, state-of-the-art VFF is limited to a handful of agents in most domains. We hypothesize that this is due to the flat factorization scheme, where the VFF operator becomes a performance bottleneck with an increasing number of agents. Therefore, we propose VFF with variable agent sub-teams (VAST). VAST approximates a factorization for sub-teams which can be defined in an arbitrary way and vary over time, e.g., to adapt to different situations. The sub-team values are then linearly decomposed for all sub-team members. Thus, VAST can learn on a more focused and compact input representation of the original VFF operator. We evaluate VAST in three multi-agent domains and show that VAST can significantly outperform state-of-the-art VFF, when the number of agents is sufficiently large.
Weitere Angaben
| Publikationsform: | Aufsatz in einem Buch |
|---|---|
| Begutachteter Beitrag: | Ja |
| Keywords: | Multi-Agent Learning; Reinforcement Learning; Value Function Factorization |
| Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik |
| Titel an der UBT entstanden: | Nein |
| Themengebiete aus DDC: | 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik |
| Eingestellt am: | 17 Nov 2025 10:41 |
| Letzte Änderung: | 17 Nov 2025 10:41 |
| URI: | https://eref.uni-bayreuth.de/id/eprint/95254 |

bei Google Scholar