Titelangaben
Müller, Robert ; Illium, Steffen ; Phan, Thomy ; Haider, Tom ; Linnhoff-Popien, Claudia:
Towards Anomaly Detection in Reinforcement Learning.
In:
Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems (AAMAS '22). -
Richland, SC
: International Foundation for Autonomous Agents and Multiagent Systems
,
2022
. - S. 1799-1803
. - (ACM Conferences
)
ISBN 978-1-4503-9213-6
DOI: https://doi.org/10.5555/3535850.3536113
Weitere URLs
Angaben zu Projekten
| Projekttitel: |
Offizieller Projekttitel Projekt-ID Innovationszentrum Mobiles Internet (InnoMI) Ohne Angabe |
|---|---|
| Projektfinanzierung: |
Bayerisches Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie |
Abstract
Identifying datapoints that substantially differ from normality is the task of anomaly detection (AD). While AD has gained widespread attention in rich data domains such as images, videos, audio and text, it has has been studied less frequently in the context of reinforcement learning (RL). This is due to the additional layer of complexity that RL introduces through sequential decision making. Developing suitable anomaly detectors for RL is of particular importance in safety-critical scenarios where acting on anomalous data could result in hazardous situations. In this work, we address the question of what AD means in the context of RL. We found that current research trains and evaluates on overly simplistic and unrealistic scenarios which reduce to classic pattern recognition tasks. We link AD in RL to various fields in RL such as lifelong RL and generalization. We discuss their similarities, differences, and how the fields can benefit from each other. Moreover, we identify non-stationarity to be one of the key drivers for future research on AD in RL and make a first step towards a more formal treatment of the problem by framing it in terms of the recently introduced block contextual Markov decision process. Finally, we define a list of practical desiderata for future problems.
Weitere Angaben
| Publikationsform: | Aufsatz in einem Buch |
|---|---|
| Begutachteter Beitrag: | Ja |
| Keywords: | AI safety; anomaly detection; reinforcement learning |
| Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik |
| Titel an der UBT entstanden: | Nein |
| Themengebiete aus DDC: | 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik |
| Eingestellt am: | 17 Nov 2025 11:06 |
| Letzte Änderung: | 17 Nov 2025 11:06 |
| URI: | https://eref.uni-bayreuth.de/id/eprint/95255 |

bei Google Scholar