Titelangaben
Phan, Thomy ; Ritz, Fabian ; Altmann, Philipp ; Zorn, Maximilian ; Nüßlein, Jonas ; Kölle, Michael ; Gabor, Thomas ; Linnhoff-Popien, Claudia:
Attention-Based Recurrence for Multi-Agent Reinforcement Learning under Stochastic Partial Observability.
In: Krause, Andreas ; Brunskill, Emma ; Cho, Kyunghyun ; Engelhardt, Barbara ; Sabato, Sivan ; Scarlett, Jonathan
(Hrsg.):
Proceedings of the 40th International Conference on Machine Learning. -
Red Hook, NY
: Curran Associates, Inc.
,
2023
. - S. 27840-27853
. - (Proceedings of Machine Learning Research
; 202
)
Angaben zu Projekten
| Projekttitel: |
Offizieller Projekttitel Projekt-ID Innovationszentrum Mobiles Internet (InnoMI) Ohne Angabe |
|---|---|
| Projektfinanzierung: |
Bayerisches Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie |
Abstract
Stochastic partial observability poses a major challenge for decentralized coordination in multi-agent reinforcement learning but is largely neglected in state-of-the-art research due to a strong focus on state-based centralized training for decentralized execution (CTDE) and benchmarks that lack sufficient stochasticity like StarCraft Multi-Agent Challenge (SMAC). In this paper, we propose Attention-based Embeddings of Recurrence In multi-Agent Learning (AERIAL) to approximate value functions under stochastic partial observability. AERIAL replaces the true state with a learned representation of multi-agent recurrence, considering more accurate information about decentralized agent decisions than state-based CTDE. We then introduce MessySMAC, a modified version of SMAC with stochastic observations and higher variance in initial states, to provide a more general and configurable benchmark regarding stochastic partial observability. We evaluate AERIAL in Dec-Tiger as well as in a variety of SMAC and MessySMAC maps, and compare the results with state-based CTDE. Furthermore, we evaluate the robustness of AERIAL and state-based CTDE against various stochasticity configurations in MessySMAC.
Weitere Angaben
| Publikationsform: | Aufsatz in einem Buch |
|---|---|
| Begutachteter Beitrag: | Ja |
| Keywords: | Multi-Agent Reinforcement Learning; Stochastic Partial Observability; Self-Attention |
| Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik |
| Titel an der UBT entstanden: | Nein |
| Themengebiete aus DDC: | 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik |
| Eingestellt am: | 17 Nov 2025 11:28 |
| Letzte Änderung: | 17 Nov 2025 11:28 |
| URI: | https://eref.uni-bayreuth.de/id/eprint/95257 |

bei Google Scholar