Titelangaben
Fallucca, Federico ; Gleißner, Christian ; Ruhland, Noah:
On rigid varieties isogenous to a product of curves.
In: Journal of Algebra.
Bd. 688
(2026)
.
- S. 393-419.
ISSN 1090-266X
DOI: https://doi.org/10.1016/j.jalgebra.2025.09.016
Angaben zu Projekten
| Projekttitel: |
Offizieller Projekttitel Projekt-ID Open Access Publizieren Ohne Angabe |
|---|
Abstract
In this note, we study rigid complex manifolds that are realized as quotients of a product of curves by a free action of a finite group. They serve as higher-dimensional analogues of Beauville surfaces. Using uniformization, we outline the theory to characterize these manifolds through specific combinatorial data associated with the group under the assumption that the action is diagonal and the manifold is of general type. This leads to the notion of a n-fold Beauville structure. We define an action on the set of all n-fold Beauville structures of a given finite group that allows us to distinguish the biholomorphism classes of the underlying rigid manifolds. As an application, we give a classification of these manifolds with group Z52 in the three dimensional case and prove that this is the smallest possible group that allows a rigid, free and diagonal action on a product of three curves. In addition, we provide the classification of rigid 3-folds X given by a group acting faithfully on each factor for any value of the holomorphic Euler number χ(OX)≥−5.
Weitere Angaben
| Publikationsform: | Artikel in einer Zeitschrift |
|---|---|
| Begutachteter Beitrag: | Ja |
| Keywords: | Beauville surface; Beauville group; variety isogenous to a product of curves; Rigid complex manifold |
| Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik VIII - Komplexe Analysis und Differentialgeometrie |
| Titel an der UBT entstanden: | Ja |
| Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
| Eingestellt am: | 23 Jan 2026 08:28 |
| Letzte Änderung: | 23 Jan 2026 08:28 |
| URI: | https://eref.uni-bayreuth.de/id/eprint/95854 |

bei Google Scholar