Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Compressed MgCl₂ Reveals Multiple Pathways to Cotunnite Structures

Titelangaben

Yin, Yuqing ; Dubrovinsky, Leonid ; Aslandukov, Andrii ; Aslandukova, Alena ; Akbar, Fariia Iasmin ; Zhou, Wenju ; Laniel, Dominique ; Pakhomova, Anna ; Fedotenko, Timofey ; Glazyrin, Konstantin ; Garbarino, Gaston ; Fang, Haixing ; Abrikosov, Igor A. ; Dubrovinskaia, Natalia:
Compressed MgCl₂ Reveals Multiple Pathways to Cotunnite Structures.
In: Inorganic Chemistry. (6 Februar 2026) .
ISSN 1520-510X
DOI: https://doi.org/10.1021/acs.inorgchem.5c05774

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Hochdrucksynthese neuartiger Stickstoff (N)-Halogen (Hal)-Verbindungen: binäre N-Hal und ternäre H-N-Hal (Hal = F, Cl, Br, I)
526080028

Projektfinanzierung: Deutsche Forschungsgemeinschaft

Abstract

The phase transition sequences of MeX2 compounds (Me = metal or, more generally, an electropositive element), whose constituent atoms contribute 16 valence electrons per formula unit under high pressure, are of fundamental importance in materials science, high-pressure chemistry, and mineral physics. Here, we report the first observation of trigonal prismatic coordination in this class of materials, realized in magnesium dichloride MgCl2. We synthesized anhydrous MgCl2 by the direct reaction of elemental magnesium with carbon tetrachloride (CCl4) in laser-heated diamond anvil cells from 7(2) to 83(3) GPa. Single-crystal X-ray diffraction identified the known hP3-MgCl2 polymorph at 7(2) GPa, and two previously unknown high-pressure phases: an orthorhombic oP72-MgCl2 at 28(2) and 44(3) GPa, and a cotunnite-type oP12-MgCl2 at 64(3), 73(3), and 83(3) GPa. The oP72 phase features distorted MgCl6 trigonal prisms, while the oP12 phase adopts MgCl8 bicapped trigonal prisms. This sequence of hP3 → oP72 → oP12 reveals a complex pressure-induced structural transition from layered to three-dimensional frameworks. Ab initio calculations agree well with the experimental structural data, support the stability range of the new polymorphs, provide the equation of states, and reveal their electronic properties. Our findings demonstrate several transformation pathways by which MeX2 compounds evolve toward cotunnite-type structures under compression.The phase transition sequences of MeX2 compounds (Me = metal or, more generally, an electropositive element), whose constituent atoms contribute 16 valence electrons per formula unit under high pressure, are of fundamental importance in materials science, high-pressure chemistry, and mineral physics. Here, we report the first observation of trigonal prismatic coordination in this class of materials, realized in magnesium dichloride MgCl2. We synthesized anhydrous MgCl2 by the direct reaction of elemental magnesium with carbon tetrachloride (CCl4) in laser-heated diamond anvil cells from 7(2) to 83(3) GPa. Single-crystal X-ray diffraction identified the known hP3-MgCl2 polymorph at 7(2) GPa, and two previously unknown high-pressure phases: an orthorhombic oP72-MgCl2 at 28(2) and 44(3) GPa, and a cotunnite-type oP12-MgCl2 at 64(3), 73(3), and 83(3) GPa. The oP72 phase features distorted MgCl6 trigonal prisms, while the oP12 phase adopts MgCl8 bicapped trigonal prisms. This sequence of hP3 → oP72 → oP12 reveals a complex pressure-induced structural transition from layered to three-dimensional frameworks. Ab initio calculations agree well with the experimental structural data, support the stability range of the new polymorphs, provide the equation of states, and reveal their electronic properties. Our findings demonstrate several transformation pathways by which MeX2 compounds evolve toward cotunnite-type structures under compression.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Fachgruppe Materialwissenschaften > Lehrstuhl Kristallographie
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Fachgruppe Materialwissenschaften > Professur Materialphysik und Technologie bei extremen Bedingungen
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Fachgruppe Materialwissenschaften > Professur Materialphysik und Technologie bei extremen Bedingungen > Professur Materialphysik und Technologie bei extremen Bedingungen - Univ.-Prof. Dr. Natalia Doubrovinskaia
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 530 Physik
Eingestellt am: 18 Feb 2026 08:48
Letzte Änderung: 18 Feb 2026 08:48
URI: https://eref.uni-bayreuth.de/id/eprint/96262