Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Temperature impacts differentially on the methanogenic food web of cellulose-supplemented peatland soil

Title data

Schmidt, Oliver ; Horn, Marcus A. ; Kolb, Steffen ; Drake, Harold L.:
Temperature impacts differentially on the methanogenic food web of cellulose-supplemented peatland soil.
In: Environmental Microbiology. Vol. 17 (2015) Issue 3 . - pp. 720-734.
ISSN 1462-2920
DOI: https://doi.org/10.1111/1462-2920.12507

Abstract in another language

The impact of temperature on the largely unresolved intermediary ecosystem metabolism and associated unknown microbiota that link cellulose degradation and methane production in soils of a moderately acidic (pH 4.5) fen was investigated. Supplemental [13C]cellulose stimulated the accumulation of propionate, acetate, and carbon dioxide as well as initial methane production in anoxic peat soil slurries at 15°C and 5°C. Accumulation of organic acids at 15°C was twice as fast as that at 5°C. 16S rRNA [13C]cellulose stable isotope probing identified novel unclassified Bacteria (79% identity to the next cultured relative Fibrobacter succinogenes), unclassified Bacteroidetes (89% identity to Prolixibacter bellariivorans), Porphyromonadaceae, Acidobacteriaceae, and Ruminococcaceae as main anaerobic degraders of cellulose-derived carbon at both 15°C and 5°C. Holophagaceae and Spirochaetaceae were more abundant at 15°C. Clostridiaceae dominated the degradation of cellulose-derived carbon only at 5°C. Methanosarcina was the dominant methanogenic taxa at both 15°C and 5°C. Relative abundance of Methanocella increased at 15°C whereas that of Methanoregula and Methanosaeta increased at 5°C. Thaumarchaeota closely related to Nitrosotalea (presently not known to grow anaerobically) were abundant at 5°C but absent at 15°C indicating that Nitrosotalea sp. might be capable of anaerobic growth at low temperatures in peat.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER122834
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology > Chair Ecological Microbiology
Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: Yes
DDC Subjects: 500 Science
Date Deposited: 22 Jul 2015 05:41
Last Modified: 22 Jul 2015 05:41
URI: https://eref.uni-bayreuth.de/id/eprint/16956