Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Microbial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soils

Title data

Spohn, Marie ; Chodak, Martin:
Microbial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soils.
In: Soil Biology & Biochemistry. Vol. 81 (2015) . - pp. 128-133.
ISSN 0038-0717
DOI: https://doi.org/10.1016/j.soilbio.2014.11.008

Abstract in another language

The ratio of carbon-to-nutrient in forest floors is usually much higher than the ratio of carbon-to-nutrient that soil microorganisms require for their nutrition. In order to understand how this mismatch affects carbon (C) cycling, we investigated the respiration rate per unit soil microbial biomass – the metabolic quotient (qCO2) – in relation to the soil carbon-to-nitrogen (C:N) and carbon-to-phosphorus (C:P) ratio in temperate forests. For this purpose, cores of beech, spruce, and mixed spruce-beech forest soils were cut into slices of 1 cm from the litter layer down to 5 cm in the mineral soil, and the relationship between the qCO2 and the soil C:N and the soil C:P ratio was analyzed. We found that the qCO2 was positively correlated with soil C:N ratio in spruce soils (R = 0.72), and with the soil C:P ratio in beech (R = 0.93), spruce (R = 0.80) and mixed forest soils (R = 0.96). We also observed a close correlation between the qCO2 and the soil C concentration in all three forest types. Yet, the qCO2 decreased less with depth than the C concentration in all three forest types, suggesting that the change in qCO2 is not only controlled by the soil C concentration. We conclude that microorganisms increase their respiration rate per unit biomass with increasing soil C:P ratio and C concentration, which adjusts the substrate to their nutritional demands in terms of stoichiometry.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER123741
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Soil Ecology
Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: Yes
DDC Subjects: 500 Science
Date Deposited: 29 Jul 2015 05:52
Last Modified: 29 Jul 2015 05:52
URI: https://eref.uni-bayreuth.de/id/eprint/17271