Titelangaben
    
    Spohn, Marie ; Chodak, Martin:
Microbial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soils.
  
   
    
    In: Soil Biology & Biochemistry.
      
      Bd. 81
      
      (2015)
      .
     - S. 128-133.
    
    
ISSN 0038-0717
    
    
      
DOI: https://doi.org/10.1016/j.soilbio.2014.11.008
    
    
    
     
  
  
Abstract
The ratio of carbon-to-nutrient in forest floors is usually much higher than the ratio of carbon-to-nutrient that soil microorganisms require for their nutrition. In order to understand how this mismatch affects carbon (C) cycling, we investigated the respiration rate per unit soil microbial biomass – the metabolic quotient (qCO2) – in relation to the soil carbon-to-nitrogen (C:N) and carbon-to-phosphorus (C:P) ratio in temperate forests. For this purpose, cores of beech, spruce, and mixed spruce-beech forest soils were cut into slices of 1 cm from the litter layer down to 5 cm in the mineral soil, and the relationship between the qCO2 and the soil C:N and the soil C:P ratio was analyzed. We found that the qCO2 was positively correlated with soil C:N ratio in spruce soils (R = 0.72), and with the soil C:P ratio in beech (R = 0.93), spruce (R = 0.80) and mixed forest soils (R = 0.96). We also observed a close correlation between the qCO2 and the soil C concentration in all three forest types. Yet, the qCO2 decreased less with depth than the C concentration in all three forest types, suggesting that the change in qCO2 is not only controlled by the soil C concentration. We conclude that microorganisms increase their respiration rate per unit biomass with increasing soil C:P ratio and C concentration, which adjusts the substrate to their nutritional demands in terms of stoichiometry.
        
 bei Google Scholar