Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

In vivo emission of dinitrogen by earthworms via denitrifying bacteria in the gut

Title data

Horn, Marcus A. ; Mertel, Ralf ; Kästner, Matthias ; Gehre, Matthias ; Drake, Harold L.:
In vivo emission of dinitrogen by earthworms via denitrifying bacteria in the gut.
In: Applied and Environmental Microbiology. Vol. 72 (2006) Issue 2 . - pp. 1013-1018.
ISSN 1098-5336
DOI: https://doi.org/10.1128/AEM.72.2.1013-1018.2006

Abstract in another language

Earthworms emit the greenhouse gas nitrous oxide (N2O), and ingested denitrifiers in the gut appear to be the main source of this N2O. The primary goal of this study was to determine if earthworms also emit dinitrogen (N2), the end product of complete denitrification. When [15N]nitrate was injected into the gut, the earthworms Aporrectodea caliginosa and Lumbricus terrestris emitted labeled N2 (and also labeled N2O) under in vivo conditions; emission of N2 by these two earthworms was relatively linear and approximated 1.2 and 6.6 nmol N2 per h per g (fresh weight), respectively. Isolated gut contents also produced [15N]nitrate-derived N2 and N2O under anoxic conditions. N2 is formed by N2O reductase, and acetylene, an inhibitor of this enzyme, inhibited the emission of [15N]nitrate-derived N2 by living earthworms. Standard gas chromatographic analysis demonstrated that the amount of N2O emitted was relatively linear during initial incubation periods and increased in response to acetylene. The calculated rates for the native emissions of N2 (i.e., without added nitrate) by A. caliginosa and L. terrestris were 1.1 and 1.5 nmol N2 per h per g (fresh weight), respectively; these emission rates approximated that of N2O. These collective observations indicate that (i) earthworms emit N2 concomitant with the emission of N2O via the in situ activity of denitrifying bacteria in the gut and (ii) N2O is quantitatively an important denitrification-derived end product under in situ conditions.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER32257
Institutions of the University: Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology > Chair Ecological Microbiology
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: Yes
DDC Subjects: 500 Science
Date Deposited: 29 Jul 2015 05:53
Last Modified: 29 Jul 2015 05:53
URI: https://eref.uni-bayreuth.de/id/eprint/17409