Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Biofabrication of Cell-Loaded 3D Spider Silk Constructs

Titelangaben

Schacht, Kristin ; Jungst, Tomasz ; Schweinlin, Matthias ; Ewald, Andrea ; Groll, Jürgen ; Scheibel, Thomas:
Biofabrication of Cell-Loaded 3D Spider Silk Constructs.
In: Angewandte Chemie International Edition. Bd. 54 (2015) Heft 9 . - S. 2816-2820.
ISSN 1521-3773
DOI: https://doi.org/10.1002/anie.201409846

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

Biofabrication is an emerging and rapidly expanding field of research in which additive manufacturing techniques in combination with cell printing are exploited to generate hierarchical tissue-like structures. Materials that combine printability with cytocompatibility, so called bioinks, are currently the biggest bottleneck. Since recombinant spider silk proteins are non-immunogenic, cytocompatible, and exhibit physical crosslinking, their potential as a new bioink system was evaluated. Cell-loaded spider silk constructs can be printed by robotic dispensing without the need for crosslinking additives or thickeners for mechanical stabilization. Cells are able to adhere and proliferate with good viability over at least one week in such spider silk scaffolds. Introduction of a cell-binding motif to the spider silk protein further enables fine-tuned control over cell–material interactions. Spider silk hydrogels are thus a highly attractive novel bioink for biofabrication.

Abstract in weiterer Sprache

Biofabrikation ist ein aufstrebendes Forschungsgebiet, in dem additive Fertigungsverfahren eingesetzt werden. Dabei werden hierarchische, gewebeähnliche Strukturen durch Kombination von Zellen, Material und Druckprozess hergestellt. Materialien, die druckbar und zugleich zytokompatibel sind (Biotinten) stellen derzeit den größten Engpass dar. Da rekombinante Spinnenseidenproteine zytokompatibel und nicht immunogen sind sowie physikalisch vernetzt werden können, wurde hier ihr Potenzial als neues Biotintensystem analysiert. Zellbeladene Konstrukte aus Spinnenseide können durch robotergesteuerte Dosierung, ohne zusätzliche Vernetzer oder Verdicker, gedruckt werden. Fibroblasten können mindestens eine Woche in diesen Konstrukten überleben, adhärieren und proliferieren. Die Einführung von Zelladhäsionsdomänen in die Spinnenseidenproteine ermöglicht die zusätzliche Steuerung von Zell-Material-Interaktionen. Hydrogele aus Spinnenseide sind damit eine vielversprechende neue Biotinte für die Biofabrikation.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: biofabrication; cell encapsulation; fibroblasts; hydrogels; spider silk
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien > Lehrstuhl Biomaterialien - Univ.-Prof. Dr. Thomas Scheibel
Profilfelder > Advanced Fields > Polymer- und Kolloidforschung
Profilfelder > Advanced Fields > Neue Materialien
Profilfelder > Advanced Fields > Molekulare Biowissenschaften
Profilfelder > Emerging Fields > Lebensmittel- und Gesundheitswissenschaften
Fakultäten
Profilfelder
Profilfelder > Advanced Fields
Profilfelder > Emerging Fields
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 21 Sep 2015 12:18
Letzte Änderung: 10 Mai 2022 13:52
URI: https://eref.uni-bayreuth.de/id/eprint/19462