Titelangaben
Krammer, Carmen ; Kryndushkin, Dmitry ; Suhre, Michael H. ; Kremmer, Elisabeth ; Hofmann, Andreas ; Pfeifer, Alexander ; Scheibel, Thomas ; Wickner, Reed B. ; Schätzl, Hermann M. ; Vorberg, Ina M.:
The yeast Sup35NM domain propagates as a prion in mammalian cells.
In: Proceedings of the National Academy of Sciences of the United States of America.
Bd. 106
(2009)
Heft 2
.
- S. 462-467.
ISSN 1091-6490
DOI: https://doi.org/10.1073/pnas.0811571106
Abstract
Prions are infectious, self-propagating amyloid-like protein aggregates of mammals and fungi. We have studied aggregation propensities of a yeast prion domain in cell culture to gain insights into general mechanisms of prion replication in mammalian cells. Here, we report the artificial transmission of a yeast prion across a phylogenetic kingdom. HA epitope-tagged yeast Sup35p prion domain NM was stably expressed in murine neuroblastoma cells. Although cytosolically expressed NM-HA remained soluble, addition of fibrils of bacterially produced Sup35NM to the medium efficiently induced appearance of phenotypically and biochemically distinct NM-HA aggregates that were inherited by daughter cells. Importantly, NM-HA aggregates also were infectious to recipient mammalian cells expressing soluble NM-HA and, to a lesser extent, to yeast. The fact that the yeast Sup35NM domain can propagate as a prion in neuroblastoma cells strongly argues that cellular mechanisms support prion-like inheritance in the mammalian cytosol.