Titelangaben
Römpp, Andreas ; Fricke, Wolfgang ; Klemm, Otto ; Frank, Hartmut:
Haloacetates in fog and rain.
In: Environmental Science & Technology.
Bd. 35
(2001)
Heft 7
.
- S. 1294-1298.
ISSN 0013-936X
DOI: https://doi.org/10.1021/es0012220
Abstract
Atmospheric haloacetates can arise from photochemical degradation of halogenated hydrocarbons and from direct anthropogenic emissions. Furthermore, there is also evidence of natural sources although these are quantitatively uncertain. As haloacetates are highly soluble in water, hydrometeors are most significant for their deposition. Fogwater (96 samples) and rainwater samples (over 100 samples) were collected from July 1998 to March 1999 at an ecological research site in northeastern Bavaria, Germany. They were analyzed for monofluoroacetate (MFA), difluoroacetate (DFA), trifluoroacetate (TFA), monochloroacetate (MCA), dichloroacetate (DCA), trichloroacetate (TCA), monobromoacetate (MBA), and dibromoacetate (DBA). The major inorganic ions were also determined. High concentrations of up to 11 mug/L MCA, 5 mug/L DCA, 2 mug/L TCA, and 2 mug/L TFA were found in fogwater associated with westerly winds. Backward trajectories were calculated to determine the origin of the air masses. MBA and DBA have highest concentrations in fogwater advected with air originating from the Atlantic, suggesting the marine origin of these two compounds. All analyzed substances show higher average concentrations in fog than in rain. Estimates of the deposition of haloacetates suggest that the contribution of fog may be more important than rain for the total burden of a forest ecosystem.