Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Bithionol potently inhibits human soluble adenylyl cyclase through binding to the allosteric activator site

Titelangaben

Kleinbölting, Silke ; Ramos-Espiritu, Lavoisier ; Buck, Hannes ; Colis, Laureen ; van den Heuvel, Joop ; Glickman, J. Fraser ; Levin, Lonny R. ; Buck, Jochen ; Steegborn, Clemens:
Bithionol potently inhibits human soluble adenylyl cyclase through binding to the allosteric activator site.
In: The Journal of Biological Chemistry. Bd. 291 (2016) Heft 18 . - S. 9776-9784.
ISSN 1083-351X
DOI: https://doi.org/10.1074/jbc.M115.708255

Abstract

The signaling molecule cAMP regulates functions ranging from bacterial transcription to mammalian memory. In mammals, cAMP is synthesized by nine transmembrane adenylyl cyclases (tmACs) and one soluble AC (sAC). Despite similarities in their catalytic domains, these ACs differ in regulation. tmACs respond to G-proteins, while sAC is uniquely activated by bicarbonate. Via bicarbonate regulation, sAC acts as a physiological sensor for pH/bicarbonate/CO2, and it has been implicated as a therapeutic target, e.g., for diabetes, glaucoma and a male contraceptive. Here we identify the bisphenols bithionol and hexachlorophene as potent, sAC-specific inhibitors. Inhibition appears mostly non-competitive with the substrate ATP, indicating that they act via an allosteric site. To analyze the interaction details, we solved a crystal structure of a sAC/bithionol complex. The structure reveals that the compounds are selective for sAC because they bind to the sAC-specific, allosteric binding site for the physiological activator bicarbonate. Structural comparison of the bithionol complex with apo sAC and other sAC/ligand complexes, along with mutagenesis experiments, reveal an allosteric mechanism of inhibition; the compound induces rearrangements of substrate binding residues and of Arg176, a trigger between active site and allosteric site. Our results thus provide (1) novel insights into the communication between allosteric regulatory and active sites; (2) a novel mechanism for sAC inhibition; and (3) first pharmacological compounds targeting this allosteric site and utilizing this mode of inhibition. These studies provide support for the future development of sAC modulating drugs.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Zusätzliche Informationen: PubMed-ID: 26961873
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Biochemie > Lehrstuhl Biochemie I - Proteinbiochemie der Signaltransduktion - Univ.-Prof. Dr. Clemens Steegborn
Fakultäten
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Biochemie
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 540 Chemie
Eingestellt am: 14 Mär 2016 10:59
Letzte Änderung: 16 Jun 2023 08:53
URI: https://eref.uni-bayreuth.de/id/eprint/31739