Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Optimizing sampling approaches along ecological gradients

Title data

Schweiger, Andreas ; Irl, Severin D. H. ; Steinbauer, Manuel ; Dengler, Jürgen ; Beierkuhnlein, Carl:
Optimizing sampling approaches along ecological gradients.
In: Methods in Ecology and Evolution. Vol. 7 (2016) Issue 4 . - pp. 463-471.
ISSN 2041-210X
DOI: https://doi.org/10.1111/2041-210X.12495

Abstract in another language

1.Natural scientists and especially ecologists use manipulative experiments or field observations along gradients to differentiate patterns driven by processes from those caused by random noise. A well-conceived sampling design is essential for identifying, analysing and reporting underlying patterns in a statistically solid and reproducible manner, given the normal restrictions in labour, time and money. However, a technical guideline about an adequate sampling design to maximize prediction success under restricted resources is lacking. This study aims at developing such a solid and reproducible guideline for sampling along gradients in all fields of ecology and science in general.2.We conducted simulations with artificial data for five common response types known in ecology, each represented by a simple function (no response, linear, exponential, symmetric unimodal and asymmetric unimodal). In the simulations we accounted for different levels of random and systematic error, the two sources of noise in ecological data. We quantified prediction success for varying total sample size, number of locations sampled along a spatial/temporal gradient and number of replicates per sampled location.3.The number of replicates becomes more important with increasing random error, whereas replicates become less relevant for a systematic error bigger than 20% of total variation. Thus, if high levels of systematic error are indicated or expected (e.g. in field studies with spatial autocorrelation, unaccountable additional environmental drivers, or population clustering), continuous sampling with little to no replication is recommended. In contrast, sampling design with replications is recommended in studies that can control for systematic errors. In a setting that is characteristic for ecological experiments and field studies strictly controlling for undeterminable systematic error (random error ≥ 10% and systematic error ≤ 10% of total variation), prediction success was best for an intermediate number of sampled locations along the gradient (10-15) and a low number of replicates per location (3).4.Our findings from reproducible, statistical simulations will help to design appropriate and efficient sampling approaches and to avoid erroneous conclusions based on studies with flawed sampling design, which is currently one of the main targets of public criticism against science.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER131416
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology > Chair Plant Ecology
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Biogeography
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Biogeography > Chair Biogeography - Univ.-Prof. Dr. Carl Beierkuhnlein
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Professorship Disturbance Ecology
Research Institutions
Research Institutions > Research Centres
Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences
Result of work at the UBT: Yes
DDC Subjects: 500 Science
Date Deposited: 05 Aug 2016 09:24
Last Modified: 05 Aug 2016 09:46
URI: https://eref.uni-bayreuth.de/id/eprint/33846