Bibliografische Daten exportieren
Literatur vom gleichen Autor
plus auf ERef Bayreuth
plus bei Google Scholar


Noncooperative Model Predictive Control


Stieler, Marleen ; Baumann, Michael Heinrich ; Grüne, Lars:
Noncooperative Model Predictive Control.
Veranstaltung: 89th GAMM Annual Meeting 2018 , 19. - 23. März 2018 , München.
(Veranstaltungsbeitrag: Kongress/Konferenz/Symposium/Tagung , Vortrag )

Angaben zu Projekten

Offizieller ProjekttitelProjekt-ID
DFG-Project "Performance Analysis for Distributed and Multiobjective Model Predictive Control"GR 1569/13-1

Projektfinanzierung: Bundesministerium für Bildung und Forschung
Deutsche Forschungsgemeinschaft
The work of Michael H. Baumann is supported by a scholarship of Hanns-Seidel-Stiftung e.V. (HSS), funded by Bundesministerium für Bildung und Forschung (BMBF).


Nash strategies are a natural solution concept in noncooperative game theory because of their ’stable’ nature: If the other players stick to the Nash strategy it is never beneficial for one player to unilaterally change his or her strategy. In this sense, Nash strategies are the only reliable strategies.
The idea to perform and analyze Model Predictive Control based on Nash strategies instead of optimal control sequences is appealing because it allows for a systematic handling of noncooper- ative games, which are played in a receding horizon manner. However, existence and structure of Nash strategies heavily depend on the specific game under consideration. This is in contrast to solution concepts such as usual optimality and Pareto optimality, in which one can state very general existence results or, in the case of Pareto optima, one knows that they are to be found on the ’lower left’ boundary of the set of admissible values in the value space. Moreover, the calculation of Nash strategies is, in general, a very difficult task.
In this talk we present a class of games for which the closed-loop trajectory of the Nash-based MPC scheme converges to an equilibrium of the system. This equilibrium turns out to be a Pareto-optimal steady state, i.e. a Pareto-optimal solution to the multiobjective problem of minimizing all players’ stage costs restricted to the set of equilibria. We furthermore investigate the relation between the closed loop and open-loop Nash strategies on the infinite horizon in terms of the trajectories as well as of the performance.

Weitere Angaben

Publikationsform: Veranstaltungsbeitrag (Vortrag)
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik)
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) > Lehrstuhl Mathematik V (Angewandte Mathematik) - Univ.-Prof. Dr. Lars Grüne
Profilfelder > Advanced Fields > Nichtlineare Dynamik
Forschungseinrichtungen > Forschungszentren > Forschungszentrum für Modellbildung und Simulation (MODUS)
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Profilfelder > Advanced Fields
Forschungseinrichtungen > Forschungszentren
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 08 Mai 2018 12:16
Letzte Änderung: 08 Mai 2018 12:16
URI: https://eref.uni-bayreuth.de/id/eprint/44035