Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Mechanochemically Carboxylated Multilayer Graphene for Carbon/ABS Composites with Improved Thermal Conductivity

Title data

Burk, Laura ; Gliem, Matthias ; Lais, Fabian ; Nutz, Fabian A. ; Retsch, Markus ; Mülhaupt, Rolf:
Mechanochemically Carboxylated Multilayer Graphene for Carbon/ABS Composites with Improved Thermal Conductivity.
In: Polymers. Vol. 10 (2018) Issue 10 . - p. 1088.
ISSN 2073-4360
DOI: https://doi.org/10.3390/polym10101088

Official URL: Volltext

Project information

Project financing: Deutsche Forschungsgemeinschaft

Abstract in another language

Dry ball milling of graphite under carbon dioxide pressure affords multilayer-functionalized graphene (MFG) with carboxylic groups as nanofiller for composites of carbon and acrylonitrile–butadiene–styrene copolymers (ABSs). Produced in a single-step process without requiring purification, MFG nanoplatelets are uniformly dispersed in ABS even in the absence of compatibilizers. As compared to few-layer graphene oxide, much larger amounts of MFG are tolerated in ABS melt processing. Unparalleled by other carbon nanofillers and non-functionalized micronized graphite, the addition of 15 wt % MFG simultaneously results in a Young’s modulus of 2550 MPa (+68%), a thermal conductivity of 0.321 W∙m−1∙K−1 (+200%), and a heat distortion temperature of 99 °C (+9%) with respect to neat ABS, without encountering massive embrittlement and melt-viscosity build-up typical of few-layer graphene oxide. With carbon filler at 5 wt %, the Young’s modulus increases with increasing aspect ratio of the carbon filler and is superior to spherical hydroxyl-functionalized MFG, which forms large agglomerates. Both MFG and micronized graphite hold promise for designing carbon/ABS compounds with improved thermal management in lightweight engineering applications.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Physical Chemistry I
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Physical Chemistry I > Lehrstuhl Physikalische Chemie I - Univ.-Prof. Dr. Markus Retsch
Profile Fields > Advanced Fields > Polymer and Colloid Science
Research Institutions > Research Centres > Bayreuth Institute of Macromolecular Research - BIMF
Research Institutions > Research Centres > Bayreuth Center for Colloids and Interfaces - BZKG
Research Institutions > Collaborative Research Centers, Research Unit > SFB 840 Von partikulären Nanosystemen zur Mesotechnologie
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Profile Fields
Profile Fields > Advanced Fields
Research Institutions
Research Institutions > Research Centres
Research Institutions > Collaborative Research Centers, Research Unit
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 540 Chemistry
Date Deposited: 09 Jan 2019 09:31
Last Modified: 09 Jan 2019 10:47
URI: https://eref.uni-bayreuth.de/id/eprint/46838