Titelangaben
Riedl, Wolfgang ; Baier, Robert ; Gerdts, Matthias:
Analytical and numerical estimates of reachable sets in a subdivision scheme.
Bayreuth ; Neubiberg/München
,
2017
. - 15 S.
DOI: https://doi.org/10.15495/EPub_UBT_00005055
Abstract
Reachable sets for (discrete) nonlinear control problems can be described by feasible sets of nonlinear optimization problems. The objective function for this problem is set to minimize the distance from an arbitrary grid point of a bounding box to the reachable set.
To avoid the high computational costs of starting the optimizer for all points in an equidistant grid, an adaptive version based on the subdivision framework known in the computation of attractors and invariant measures is studied. The generated box collections provide over-approximations which shrink to the reachable set for a decreasing maximal diameter of the boxes in the collection and, if the bounding box is too pessimistic, do not lead to an exploding number of boxes as examples show. Analytical approaches for the bounding box of a 3d funnel are gained via the Gronwall-Filippov-Wazewski theorem for differential inclusions or by choosing good reference solutions. An alternative self-finding algorithm for the bounding box is applied to a higher-dimensional kinematic car model.
Weitere Angaben
Publikationsform: | Preprint, Postprint |
---|---|
Zusätzliche Informationen: | Contents:
1. Introduction 1.1 Reachability analysis 1.2 Preliminaries 1.3 Control problems and differential inclusions 1.4 Direct discretization via set-valued Runge-Kutta methods 2. Subdivision Algorithm for Reachable Sets and Its Convergence 2.1 Non-adaptive and adaptive algorithm 2.2 Convergence study 3. Analytical and Numerical Calculation of Bounding Boxes 3.1 Analytical approach 3.2 Numerical approach 4. Examples 4.1 Kenderov’s example 4.2 Car model 5. Conclusions |
Keywords: | reachable sets; subdivision; direct discretization of optimal control;
Filippov's theorem; nonlinear optimization |
Fachklassifikationen: | Mathematics Subject Classification Code: 93B03 34A60 (49M25 49J53 65L07 93D23 93C10) |
Institutionen der Universität: | Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) > Lehrstuhl Mathematik V (Angewandte Mathematik) - Univ.-Prof. Dr. Lars Grüne Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wissenschaftliches Rechnen Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wissenschaftliches Rechnen > Lehrstuhl Wissenschaftliches Rechnen - Univ.-Prof. Dr. Mario Bebendorf Profilfelder Profilfelder > Advanced Fields Profilfelder > Advanced Fields > Nichtlineare Dynamik |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 19 Sep 2020 21:00 |
Letzte Änderung: | 24 Mär 2022 12:28 |
URI: | https://eref.uni-bayreuth.de/id/eprint/57313 |