Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Classification of target tissues of Eisenia fetida using sequential multimodal chemical analysis and machine learning

Titelangaben

Ritschar, Sven ; Schirmer, Elisabeth ; Hufnagl, Benedikt ; Löder, Martin G. J. ; Römpp, Andreas ; Laforsch, Christian:
Classification of target tissues of Eisenia fetida using sequential multimodal chemical analysis and machine learning.
In: Histochemistry and Cell Biology. Bd. 157 (2022) Heft 2 . - S. 127-137.
ISSN 1432-119X
DOI: https://doi.org/10.1007/s00418-021-02037-1

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
SFB 1357 Mikroplastik
391977956

Projektfinanzierung: Deutsche Forschungsgemeinschaft

Abstract

Acquiring comprehensive knowledge about the uptake of pollutants, impact on tissue integrity and the effects at the molecular level in organisms is of increasing interest due to the environmental exposure to numerous contaminants. The analysis of tissues can be performed by histological examination, which is still time-consuming and restricted to target-specific staining methods. The histological approaches can be complemented with chemical imaging analysis. Chemical imaging of tissue sections is typically performed using a single imaging approach. However, for toxicological testing of environmental pollutants, a multimodal approach combined with improved data acquisition and evaluation is desirable, since it may allow for more rapid tissue characterization and give further information on ecotoxicological effects at the tissue level. Therefore, using the soil model organism Eisenia fetida as a model, we developed a sequential workflow combining Fourier transform infrared spectroscopy (FTIR) and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) for chemical analysis of the same tissue sections. Data analysis of the FTIR spectra via random decision forest (RDF) classification enabled the rapid identification of target tissues (e.g., digestive tissue), which are relevant from an ecotoxicological point of view. MALDI imaging analysis provided specific lipid species which are sensitive to metabolic changes and environmental stressors. Taken together, our approach provides a fast and reproducible workflow for label-free histochemical tissue analyses in E. fetida, which can be applied to other model organisms as well.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: Multimodal imaging; Eisenia fetida; Random decision forest; Tissue analysis; MALDI-MSI; FTIR
Institutionen der Universität: Fakultäten
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Biologie
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Biologie > Lehrstuhl Tierökologie I
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Biologie > Lehrstuhl Tierökologie I > Lehrstuhl Tierökologie I - Univ.-Prof. Dr. Christian Laforsch
Fakultäten > Fakultät für Lebenswissenschaften: Lebensmittel, Ernährung und Gesundheit > Lehrstuhl Bioanalytik und Lebensmittelanalytik
Fakultäten > Fakultät für Lebenswissenschaften: Lebensmittel, Ernährung und Gesundheit > Lehrstuhl Bioanalytik und Lebensmittelanalytik > Lehrstuhl Bioanalytik und Lebensmittelanalytik - Univ.-Prof. Dr. Andreas Römpp
Forschungseinrichtungen
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayreuther Zentrum für Ökologie und Umweltforschung - BayCEER
Forschungseinrichtungen > Sonderforschungsbereiche, Forschergruppen
Forschungseinrichtungen > Sonderforschungsbereiche, Forschergruppen > SFB 1357 - MIKROPLASTIK
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie
500 Naturwissenschaften und Mathematik > 590 Tiere (Zoologie)
Eingestellt am: 10 Nov 2021 10:39
Letzte Änderung: 27 Sep 2023 12:24
URI: https://eref.uni-bayreuth.de/id/eprint/67727