Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Flow Simulation and Gradient Printing of Fluorapatite- and Cell-Loaded Recombinant Spider Silk Hydrogels

Titelangaben

Neubauer, Vanessa J. ; Hüter, Florian ; Wittmann, Johannes ; Trossmann, Vanessa T. ; Kleinschrodt, Claudia ; Alber-Laukant, Bettina ; Rieg, Frank ; Scheibel, Thomas:
Flow Simulation and Gradient Printing of Fluorapatite- and Cell-Loaded Recombinant Spider Silk Hydrogels.
In: Biomolecules. Bd. 12 (2022) Heft 10 . - 1413.
ISSN 2218-273X
DOI: https://doi.org/10.3390/biom12101413

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

Hierarchical structures are abundant in almost all tissues of the human body. Therefore, it is highly important for tissue engineering approaches to mimic such structures if a gain of function of the new tissue is intended. Here, the hierarchical structures of the so-called enthesis, a gradient tissue located between tendon and bone, were in focus. Bridging the mechanical properties from soft to hard secures a perfect force transmission from the muscle to the skeleton upon locomotion. This study aimed at a novel method of bioprinting to generate gradient biomaterial constructs with a focus on the evaluation of the gradient printing process. First, a numerical approach was used to simulate gradient formation by computational flow as a prerequisite for experimental bioprinting of gradients. Then, hydrogels were printed in a single cartridge printing set-up to transfer the findings to biomedically relevant materials. First, composites of recombinant spider silk hydrogels with fluorapatite rods were used to generate mineralized gradients. Then, fibroblasts were encapsulated in the recombinant spider silk-fluorapatite hydrogels and gradually printed using unloaded spider silk hydrogels as the second component. Thereby, adjustable gradient features were achieved, and multimaterial constructs were generated. The process is suitable for the generation of gradient materials, e.g., for tissue engineering applications such as at the tendon/bone interface.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: gradient printing; bioprinting; computational fluid dynamics; recombinant spider silk hydrogels; apatite particles; single cartridge set-up; tissue engineering
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Konstruktionslehre und CAD > Lehrstuhl Konstruktionslehre und CAD - Univ.-Prof. Dr.-Ing. Stephan Tremmel
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien > Lehrstuhl Biomaterialien - Univ.-Prof. Dr. Thomas Scheibel
Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Konstruktionslehre und CAD
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie
600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 04 Okt 2022 13:29
Letzte Änderung: 01 Jun 2023 11:50
URI: https://eref.uni-bayreuth.de/id/eprint/72268