Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition

Titelangaben

Scheibel, Thomas ; Parthasarthy, Raghuveer ; Sawicki, George ; Lin, Xiao-Min ; Lindquist, Susan L.:
Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition.
In: Proceedings of the National Academy of Sciences of the United States of America. Bd. 100 (2003) Heft 8 . - S. 4527-4532.
ISSN 1091-6490
DOI: https://doi.org/10.1073/pnas.0431081100

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

Recent research in the field of nanometer-scale electronics has focused on the operating principles of small-scale devices and schemes to realize useful circuits. In contrast to established ‘‘topdown’’ fabrication techniques, molecular self-assembly is emerging as a ‘‘bottom-up’’ approach for fabricating nanostructured materials. Biological macromolecules, especially proteins, provide
many valuable properties, but poor physical stability and poor electrical characteristics have prevented their direct use in electrical circuits. Here we describe the use of self-assembling amyloid protein fibers to construct nanowire elements. Self-assembly of a prion determinant from Saccharomyces cerevisiae, the N-terminal and middle region (NM) of Sup35p, produced 10-nm-wide protein fibers that were stable under a wide variety of harsh physical conditions. Their lengths could be roughly controlled by assembly conditions in the range of 60 nm to several hundred micrometers.A genetically modified NM variant that presents reactive, surfaceaccessible cysteine residues was used to covalently link NM fibers to colloidal gold particles. These fibers were placed across gold electrodes, and additional metal was deposited by highly specific chemical enhancement of the colloidal gold by reductive deposition of metallic silver and gold from salts. The resulting silver and gold wires were '100 nm wide. These biotemplated metal wires demonstrated the conductive properties of a solid metal wire, such as low resistance and ohmic behavior. With such materials it should be possible to harness the extraordinary diversity and specificity of protein functions to nanoscale electrical circuitry.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien > Lehrstuhl Biomaterialien - Univ.-Prof. Dr. Thomas Scheibel
Profilfelder > Advanced Fields > Neue Materialien
Profilfelder > Advanced Fields > Molekulare Biowissenschaften
Profilfelder > Advanced Fields > Polymer- und Kolloidforschung
Profilfelder > Emerging Fields > Lebensmittel- und Gesundheitswissenschaften
Profilfelder
Profilfelder > Advanced Fields
Profilfelder > Emerging Fields
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 11 Mär 2015 11:34
Letzte Änderung: 05 Sep 2022 07:33
URI: https://eref.uni-bayreuth.de/id/eprint/8047