Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

NISQ-Ready Community Detection Based on Separation-Node Identification

Titelangaben

Stein, Jonas ; Ott, Dominik ; Nüßlein, Jonas ; Bucher, David ; Schönfeld, Mirco ; Feld, Sebastian:
NISQ-Ready Community Detection Based on Separation-Node Identification.
In: Mathematics. Bd. 11 (2023) Heft 15 . - 3323.
ISSN 2227-7390
DOI: https://doi.org/10.3390/math11153323

Weitere URLs

Abstract

The analysis of network structure is essential to many scientific areas ranging from biology to sociology. As the computational task of clustering these networks into partitions, i.e., solving the community detection problem, is generally NP-hard, heuristic solutions are indispensable. The exploration of expedient heuristics has led to the development of particularly promising approaches in the emerging technology of quantum computing. Motivated by the substantial hardware demands for all established quantum community detection approaches, we introduce a novel QUBO-based approach that only needs number-of-nodes qubits and is represented by a QUBO matrix as sparse as the input graph’s adjacency matrix. The substantial improvement in the sparsity of the QUBO matrix, which is typically very dense in related work, is achieved through the novel concept of separation nodes. Instead of assigning every node to a community directly, this approach relies on the identification of a separation-node set, which, upon its removal from the graph, yields a set of connected components, representing the core components of the communities. Employing a greedy heuristic to assign the nodes from the separation-node sets to the identified community cores, subsequent experimental results yield a proof of concept by achieving an up to 95 optimal solution quality on three established real-world benchmark datasets. This work hence displays a promising approach to NISQ-ready quantum community detection, catalyzing the application of quantum computers for the network structure analysis of large-scale, real-world problem instances.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: Quantum Computing; Community Detection; QUBO; NISQ; Social Network Analysis
Institutionen der Universität: Fakultäten > Sprach- und Literaturwissenschaftliche Fakultät > Juniorprofessur Datenmodellierung und interdisziplinäre Wissensgenerierung > Juniorprofessur Datenmodellierung und interdisziplinäre Wissensgenerierung - Juniorprof. Dr. Mirco Schönfeld
Fakultäten
Fakultäten > Sprach- und Literaturwissenschaftliche Fakultät
Fakultäten > Sprach- und Literaturwissenschaftliche Fakultät > Juniorprofessur Datenmodellierung und interdisziplinäre Wissensgenerierung
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
Eingestellt am: 04 Aug 2023 09:20
Letzte Änderung: 07 Aug 2023 09:53
URI: https://eref.uni-bayreuth.de/id/eprint/86512