Titelangaben
Bold, Lea ; Grüne, Lars ; Schaller, Manuel ; Worthmann, Karl:
Data-driven MPC with stability guarantees using extended dynamic mode decomposition.
In: IEEE Transactions on Automatic Control.
Bd. Online First
(Juli 2024)
.
- S. 1-8.
ISSN 1558-2523
DOI: https://doi.org/10.1109/TAC.2024.3431169
Dies ist die aktuelle Version des Eintrags.
Weitere URLs
Angaben zu Projekten
Projekttitel: |
Offizieller Projekttitel Projekt-ID Optimierungsbasierte Steuerung und Regelung 507037103 |
---|---|
Projektfinanzierung: |
Deutsche Forschungsgemeinschaft |
Abstract
For nonlinear (control) systems, extended dynamic mode decomposition (EDMD) is a popular method to obtain data-driven surrogate models. Its theoretical foundation is the Koopman framework, in which one propagates observable functions of the state to obtain a linear representation in an infinite-dimensional space. In this work, we prove practical asymptotic stability of a (controlled) equilibrium for EDMD-based model predictive control, in which the optimization step is conducted using the data-based surrogate model. To this end, we derive novel bounds on the estimation error that are proportional to the norm of state and control. This enables us to show that, if the underlying system is cost controllable, this stabilizablility property is preserved. We conduct numerical simulations illustrating the proven practical asymptotic stability.
Weitere Angaben
Zu diesem Eintrag verfügbare Versionen
-
Practical asymptotic stability of data-driven model predictive control using extended DMD. (deposited 03 Aug 2023 10:48)
- Data-driven MPC with stability guarantees using extended dynamic mode decomposition. (deposited 26 Jul 2024 08:42) [Aktuelle Anzeige]