Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Temperature sensitivity of soil respiration declines with climate warming in subalpine and alpine grassland soils

Titelangaben

Abdalla, Khatab ; Schierling, Larissa ; Sun, Yue ; Schuchardt, Max A. ; Jentsch, Anke ; Deola, Thomas ; Wolff, Peter ; Kiese, Ralf ; Lehndorff, Eva ; Pausch, Johanna ; Meyer, Nele:
Temperature sensitivity of soil respiration declines with climate warming in subalpine and alpine grassland soils.
In: Biogeochemistry. Bd. 167 (2024) . - S. 1453-1467.
ISSN 1573-515X
DOI: https://doi.org/10.1007/s10533-024-01179-3

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

Warming as a climate change phenomenon affects soil organic matter dynamics, especially in high elevation ecosystems. However, our understanding of the controls of soil organic matter mineralization and dynamics remains limited, particularly in alpine (above treeline) and subalpine (below treeline) grassland ecosystems. Here, we investigated how downslope (warming) and upslope (cooling) translocations, in a 5-years reciprocal transplanting experiment, affects soil respiration and its temperature sensitivity (Q10), soil aggregation, and soil organic matter carbon (C) and nitrogen (N) composition (C/N ratio). Downslope translocation of the alpine (2440 m a.s.l.) and subalpine (1850 m a.s.l.) to the lowland site (350 m a.s.l.) resulted in a temperature change during the growing seasons of + 4.4K and + 3.3K, respectively. Warming of alpine soils (+ 4.4K) reduced soil organic carbon (SOC) content by 32%, which was accompanied by a significant decrease of soil macroaggregates. Macroaggregate breakdown induced an increased respiration quotient (qCO2) by 27% following warming of alpine soils. The increase in qCO2 respiration was associated with a significant decrease (from 2.84 ± 0.05 to 2.46 ± 0.05) in Q10, and a change in soil organic matter composition (lower C/N ratios). Cooling did not show the opposite patterns to warming, implying that other mechanisms, such as plant and microbial community shifts and adaptation, were involved. This study highlights the important role of SOC degradability in regulating the temperature response of soil organic matter mineralization. To predict the adverse effect of warming on soil CO2 release and, consequently, its negative feedback on climate change, a comprehensive understanding of the mechanisms of C storage and turnover is needed, especially at high elevations in the Alps that are particularly affected by rising temperatures.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: Grasslands; Soil aggregates; Soil organic matter; Climate change
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften > Professur Agrarökologie > Professur Agrarökologie - Univ.-Prof. Dr. Johanna Pausch
Fakultäten
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften > Professur Agrarökologie
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie
Eingestellt am: 19 Okt 2024 21:00
Letzte Änderung: 22 Jan 2025 14:24
URI: https://eref.uni-bayreuth.de/id/eprint/90773