Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Operando impedance-based battery cell internal temperature estimation under non-stationarity and non-linearity conditions

Titelangaben

Hackmann, Tobias ; Emir, Yunus ; Danzer, Michael A.:
Operando impedance-based battery cell internal temperature estimation under non-stationarity and non-linearity conditions.
In: Energy and AI. Bd. 21 (2025) . - 100569.
ISSN 2666-5468
DOI: https://doi.org/10.1016/j.egyai.2025.100569

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

Electrochemical impedance spectroscopy, a method for battery diagnostics, is used to estimate the internal temperature of a lithium-ion battery cell during highly dynamic load profiles. For the first time, a recurrent neural network is trained and evaluated with operando impedance data for temperature estimation. Furthermore, an approach is considered that guides the training process of the neural network by incorporating physical constraints. The model’s development based on an extensive series of measurements with different load profiles, tested under realistic conditions on large-format lithium-ion cells. The estimation accuracy of the data-driven approach is evaluated and compared against model-based methods, including the extended Kalman filter. An impedance correction model is proposed, which leads to a significant enhancement of the model-based estimation. The recurrent neural network under consideration achieves a mean square error of 1.07 °C for the investigated testing profiles in the temperature range up to 60 °C.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: Temperature estimation; Recurrent neural network; Extended Kalman filter; Electrochemical impedance spectroscopy (EIS); Non-stationarity; Non-linearity
Institutionen der Universität: Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Elektrische Energiesysteme
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Elektrische Energiesysteme > Lehrstuhl Elektrische Energiesysteme - Univ.-Prof. Dr.-Ing. Michael Danzer
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayerisches Zentrum für Batterietechnik - BayBatt
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 05 Aug 2025 10:41
Letzte Änderung: 07 Aug 2025 11:12
URI: https://eref.uni-bayreuth.de/id/eprint/94426