Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Detection of seasonal variability in microclimatic borders and ecotones between forest and savanna

Titelangaben

Hennenberg, Klaus J. ; Goetze, Dethardt ; Szarzynski, Jörg ; Orthmann, Bettina ; Reineking, Björn ; Steinke, Ingo ; Porembski, Stefan:
Detection of seasonal variability in microclimatic borders and ecotones between forest and savanna.
In: Basic and Applied Ecology. Bd. 9 (2008) Heft 3 . - S. 275-285.
ISSN 1439-1791
DOI: https://doi.org/10.1016/j.baae.2007.02.004

Abstract

Along eight forest-savanna transects, the borders, the width of associated ecotones, and the depth-of-edge influence (DEI) towards the forest interior were determined on the basis of microclimatic parameters. The analysis focused on the seasonal variability of microclimate at the forest-savanna ecotone that has so far rarely been investigated. The study was located in an intact mosaic of semi-deciduous forests and savanna in the Comoé National Park (north-eastern Ivory Coast). The microclimatic parameters air temperature, air humidity, and vapor pressure deficit were measured from the dry season (February) until the rainy season (September) during five measurement periods (MP). Borders and ecotones including their confidence intervals were determined by a border-and-ecotone detection analysis, which is based on non-linear regression analysis. The ecotone limits were interpreted as DEI towards the two habitats. During the dry season, the microclimatic border between forest and savanna was located further towards the forest interior than during the rainy season. This may be caused by different foliation patterns of tree species at the forest interior and the forest boundary, with the latter being completely defoliated during the dry season. In addition, the variability of microclimatic parameters was higher and differences between forest and savanna were less pronounced during the dry season. The minimum DEI towards the forest interior was 27.4±15.5 m for air humidity in the rainy season (MP-5). The maximum DEI of 137.3 ±138.3 m occurred for air temperature in the dry season (MP-1). The average DEI for all microclimate parameters and MPs was 50.5 m. These DEI values are similar to observations from temperate and tropical forest boundaries in the literature. As microclimate borders proved to shift over the seasons, detailed knowledge of species’ responses to this variability appears to be essential for predicting concomitant dynamics of forest core areas.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Zusätzliche Informationen: BAYCEER60045
Institutionen der Universität: Forschungseinrichtungen > Forschungszentren > Bayreuther Zentrum für Ökologie und Umweltforschung - BayCEER
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften > Juniorprofessur Biogeographische Modellierung
Fakultäten
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften
Forschungseinrichtungen
Forschungseinrichtungen > Forschungszentren
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik
Eingestellt am: 29 Apr 2015 15:42
Letzte Änderung: 15 Mär 2022 14:08
URI: https://eref.uni-bayreuth.de/id/eprint/11732