Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Influence of supramolecular aditives on foam morphology injection-molded i-PP

Title data

Stumpf, Marieluise ; Spörrer, Andreas N. J. ; Schmidt, Hans-Werner ; Altstädt, Volker:
Influence of supramolecular aditives on foam morphology injection-molded i-PP.
In: Journal of Cellular Plastics. Vol. 47 (2011) Issue 6 . - pp. 519-534.
ISSN 1530-7999
DOI: https://doi.org/10.1177/0021955X11408769

Abstract in another language

Foaming isotactic polypropylene (i-PP) by foam injection molding usually results in inhomogeneous, large cell structures. Possibilities to realize more homogeneous and finer foam morphologies are adjusting processing parameters or adding nucleating agents. Often, inorganic nucleating agents such as talc in concentrations of about 2 wt% are used to influence the foam morphology. This article discusses the use of two benzene trisamide-based nucleating agents to control cell nucleation during foaming of i-PP. These additives form supramolecular nanostructures in the polymer melt acting first as nucleating sites for foam formation and second as nuclei for the polymer crystallization. Foaming was performed by foam injection molding with nitrogen as physical blowing agent. A specially designed variotherm mold technology was utilized to exactly control the foaming temperature, foaming pressure, and expansion ratio. Foamed i-PP samples were prepared with a density reduction of 50% and analyzed with respect to foam structure and mechanical properties. We demonstrate that the benzene trisamide additives have a strong influence on the foam morphology at very low additive concentrations. Only 0.02 wt% of an additive is sufficient to obtain a remarkable reduction of the cell sizes. It appears that the cell struts, those dimensions can be influenced by the additives as well, leads to a significant improvement of the mechanical properties.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Macromolecular Chemistry I
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Macromolecular Chemistry I > Chair Macromolecular Chemistry I - Univ.-Prof. Dr. Hans-Werner Schmidt
Faculties > Faculty of Engineering Science
Faculties > Faculty of Engineering Science > Chair Polymer Materials
Faculties > Faculty of Engineering Science > Former Professors > Chair Polymer Materials - Univ.-Prof. Dr.-Ing. Volker Altstädt
Profile Fields
Profile Fields > Advanced Fields
Profile Fields > Advanced Fields > Polymer and Colloid Science
Profile Fields > Advanced Fields > Advanced Materials
Profile Fields > Emerging Fields
Profile Fields > Emerging Fields > Energy Research and Energy Technology
Research Institutions
Research Institutions > Research Centres
Research Institutions > Research Centres > Bayreuth Institute of Macromolecular Research - BIMF
Research Institutions > Research Centres > Bayreuth Center for Material Science and Engineering - BayMAT
Faculties > Faculty of Engineering Science > Former Professors
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 540 Chemistry
Date Deposited: 29 Jun 2015 10:20
Last Modified: 03 Aug 2020 13:08
URI: https://eref.uni-bayreuth.de/id/eprint/1228