Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

A robust protein host for anchoring chelating ligands and organocatalysts

Title data

Reetz, Manfred T. ; Rentzsch, Martin ; Pletsch, Andreas ; Taglieber, Andreas ; Hollmann, Frank ; Mondière, Régis J. G. ; Dickmann, Norbert ; Höcker, Birte ; Cerrone, Simona ; Haeger, Michaela C. ; Sterner, Reinhard:
A robust protein host for anchoring chelating ligands and organocatalysts.
In: ChemBioChem. Vol. 9 (2008) Issue 4 . - pp. 552-564.
ISSN 1439-7633
DOI: https://doi.org/10.1002/cbic.200700413

Abstract in another language

In order to put the previously proposed concept of directed evolution of hybrid catalysts (proteins that harbor synthetic transition-metal catalysts or organocatalysts) into practice, several prerequisites must be met. The availability of a robust host protein that can be expressed in sufficiently large amounts, and that can be purified in a simple manner is crucial. The thermostable enzyme tHisF from Thermotoga maritima, which constitutes the synthase subunit of a bi-enzyme complex that is instrumental in the biosynthesis of histidine, fulfills these requirements. In the present study, fermentation has been miniaturized and parallelized, as has purification of the protein by simple heat treatment. Several mutants with strategically placed cysteines for subsequent bioconjugation have been produced. One of the tHisF mutants, Cys9Ala/Asp11Cys, was subjected to bioconjugation by the introduction of a variety of ligands for potential metal ligation, of a ligand/metal moiety, and of several organocatalytic entities that comprise a flavin or thiazolium salts. Characterization by mass spectrometry and tryptic digestion was achieved. As a result of this study, a platform for performing future directed evolution of these hybrid catalysts is now available.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Biochemistry > Chair Biochemistry - Univ.-Prof. Dr. Birte Höcker
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Biochemistry
Result of work at the UBT: No
DDC Subjects: 500 Science > 540 Chemistry
Date Deposited: 01 Jun 2017 07:42
Last Modified: 27 Oct 2022 10:31
URI: https://eref.uni-bayreuth.de/id/eprint/37223