Titelangaben
Heinlein, Daniel ; Kiermaier, Michael ; Kurz, Sascha ; Wassermann, Alfred:
Tables of subspace codes.
Bayreuth
,
2017
. - 39 S.
Weitere URLs
Angaben zu Projekten
Projekttitel: |
Offizieller Projekttitel Projekt-ID Ganzzahlige Optimierungsmodelle für Subspace Codes und endliche Geometrie Ohne Angabe |
---|---|
Projektfinanzierung: |
Deutsche Forschungsgemeinschaft |
Abstract
The main problem of subspace coding asks for the maximum possible cardinality of a subspace code with minimum distance at least d over the n-dimensional vector space
of the finite field with q elements, where the dimensions of the codewords, which are vector spaces, are contained in {0,1,...,n}. In the special case of K={k} one speaks of constant dimension codes. Since this emerging field is very prosperous on the one hand side and there are a lot of connections to classical objects from Galois geometry it is a bit difficult to keep or to obtain an overview about the current state of knowledge. To this end we have implemented an on-line database of the (at least to us) known results at subspacecodes.uni-bayreuth.de. The aim of this recurrently updated technical report is to provide a user guide how this technical tool can be used in research projects and to describe the so far implemented theoretic and algorithmic knowledge.
Weitere Angaben
Zu diesem Eintrag verfügbare Versionen
-
Tables of subspace codes. (deposited 16 Jan 2016 22:00)
- Tables of subspace codes. (deposited 14 Dec 2017 08:23) [Aktuelle Anzeige]