Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Morphology-Dependent Charge Photogeneration in Donor–Acceptor Block Copolymer Films Based on Poly(3-hexylthiophene)-block-Poly(perylene bisimide acrylate)

Titelangaben

Hüttner, Sven ; Hodgkiss, Justin ; Sommer, Michael ; Friend, Richard H. ; Steiner, Ullrich ; Thelakkat, Mukundan:
Morphology-Dependent Charge Photogeneration in Donor–Acceptor Block Copolymer Films Based on Poly(3-hexylthiophene)-block-Poly(perylene bisimide acrylate).
In: The Journal of Physical Chemistry B. Bd. 116 (2012) Heft 33 . - S. 10070-10078.
ISSN 1520-5207
DOI: https://doi.org/10.1021/jp301966p

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

We have examined how the nanomorphology and crystallinity of semiconducting double-crystalline block copolymers determine their photophysical and photovoltaic responses. The block copolymers consist of a poly(3-hexylthiophene) (P3HT) donor block coupled to a polymerized perylene bisimide acrylate (PPerAcr) acceptor. Different molecular weights and processing solvents allow the modification of the donor–acceptor interface with regard to their morphology and crystallinity. Transient absorption spectroscopy was used to resolve photoinduced charge transfer seen on the ∼1 ps time scale, consistent with substantial photoluminescence quenching caused by finely dispersed, disordered donor–acceptor interfaces. For high molecular weight block copolymers, microphase separation is enhanced by slow film formation, leading to slower charge photogeneration. The crystallinity of the P3HT component is of particular importance, which has been monitored spectroscopically. Crystalline P3HT/PPerAcr interfaces lead to high levels of long-lived charge pairs that are more easily extracted in an applied electric field. While external quantum efficiencies of over 25% were obtained, the overall power conversion efficiency of the best block copolymer device is still limited. This is due to the unsuitable orientation of the block copolymer nanomorphology, and the performance lies below that achieved for a blend of equivalent homopolymers. This suggests that increasing the molecular weight of the block copolymers to tune the microphase separation could further improve the photovoltaic efficiency. Our photophysical results give guidelines for future development of promising block copolymer-derived devices, highlighting the importance of interfacial crystallinity and sufficient phase separation.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Ehemalige ProfessorInnen
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Professur Makromolekulare Chemie I
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Juniorprofessur Solarenergie
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Ehemalige ProfessorInnen > Juniorprofessur Solarenergie - Juniorprof. Dr. Sven Hüttner
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Professur Angewandte Funktionspolymere > Professur Angewandte Funktionspolymere - Univ.-Prof. Dr. Mukundan Thelakkat
Profilfelder
Profilfelder > Advanced Fields
Profilfelder > Advanced Fields > Polymer- und Kolloidforschung
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Professur Angewandte Funktionspolymere
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 540 Chemie
Eingestellt am: 12 Jan 2018 10:36
Letzte Änderung: 24 Jan 2025 10:55
URI: https://eref.uni-bayreuth.de/id/eprint/41716