Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Unearthing carrion beetles' microbiome : characterization of bacterial and fungal hindgut communities across the Silphidae

Title data

Kaltenpoth, Martin ; Steiger, Sandra:
Unearthing carrion beetles' microbiome : characterization of bacterial and fungal hindgut communities across the Silphidae.
In: Molecular Ecology. Vol. 23 (2014) Issue 6 . - pp. 1251-1267.
ISSN 1365-294X
DOI: https://doi.org/10.1111/mec.12469

Abstract in another language

Carrion beetles (Coleoptera, Silphidae) are well known for their behaviour of exploiting vertebrate carcasses for nutrition. While species in the subfamily Silphinae feed on large carcasses and on larvae of competing scavengers, the Nicrophorinae are unique in monopolizing, burying and defending small carrion, and providing extensive biparental care. As a first step towards investigating whether microbial symbionts may aid in carcass utilization or defence, we characterized the microbial hindgut communities of six Nicrophorinae (Nicrophorus spp.) and two Silphinae species (Oiceoptoma noveboracense and Necrophila americana) by deep ribosomal RNA amplicon sequencing. Across all species, bacteria in the family Xanthomonadaceae, related to Ignatzschineriao larvae, were consistently common, and several other taxa were present in lower abundance (Enterobacteriales, Burkholderiales, Bacilli, Clostridiales and Bacteroidales). Additionally, the Nicrophorinae showed high numbers of unusual Clostridiales, while the Silphinae were characterized by Flavobacteriales and Rhizobiales (Bartonella sp.). In addition to the complex community of bacterial symbionts, each species of carrion beetle harboured a diversity of ascomycetous yeasts closely related to Yarrowia lipolytica. Despite the high degree of consistency in microbial communities across the Silphidae—specifically within the Nicrophorinae—both the fungal symbiont phylogeny and distance‐based bacterial community clustering showed higher congruence with sampling locality than host phylogeny. Thus, despite the possibility for vertical transmission via anal secretions, the distinct hindgut microbiota of the Silphidae appears to be shaped by frequent horizontal exchange or environmental uptake of symbionts. The microbial community profiles, together with information on host ecology and the metabolic potential of related microorganisms, allow us to propose hypotheses on putative roles of the symbionts in carcass degradation, detoxification and defence.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER147428
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology > Chair Animal Ecology II - Evolutionary Animal Ecology > Chair Animal Ecology II - Evolutionary Animal Ecology - Univ.-Prof. Dr. Sandra Steiger
Research Institutions
Research Institutions > Research Centres
Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology > Chair Animal Ecology II - Evolutionary Animal Ecology
Result of work at the UBT: No
DDC Subjects: 500 Science
Date Deposited: 12 Apr 2019 11:49
Last Modified: 12 Apr 2019 11:49
URI: https://eref.uni-bayreuth.de/id/eprint/48358