Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Characterization of the physiology and cell–mineral interactions of the marine anoxygenic phototrophic Fe(II) oxidizer Rhodovulum iodosum – implications for Precambrian Fe(II) oxidation

Titelangaben

Wu, Wenfang ; Swanner, Elizabeth D. ; Hao, Likai ; Zeitvogel, Fabian ; Obst, Martin ; Pan, Yongxin ; Kappler, Andreas:
Characterization of the physiology and cell–mineral interactions of the marine anoxygenic phototrophic Fe(II) oxidizer Rhodovulum iodosum – implications for Precambrian Fe(II) oxidation.
In: FEMS Microbiology Ecology. Bd. 88 (2014) Heft 3 . - S. 503-515.
ISSN 1574-6941
DOI: https://doi.org/10.1111/1574-6941.12315

Abstract

Anoxygenic phototrophic Fe(II)-oxidizing bacteria (photoferrotrophs) are sug- gested to have contributed to the deposition of banded iron formations (BIFs) from oxygen-poor seawater. However, most studies evaluating the contribution of photoferrotrophs to Precambrian Fe(II) oxidation have used freshwater and not marine strains. Therefore, we investigated the physiology and mineral prod- ucts of Fe(II) oxidation by the marine photoferrotroph Rhodovulum iodosum. Poorly crystalline Fe(III) minerals formed initially and transformed to more crystalline goethite over time. During Fe(II) oxidation, cell surfaces were largely free of minerals. Instead, the minerals were co-localized with EPS suggesting that EPS plays a critical role in preventing cell encrustation, likely by binding Fe (III) and directing precipitation away from cell surfaces. Fe(II) oxidation rates increased with increasing initial Fe(II) concentration (0.43–4.07 mM) under a light intensity of 12 µmol quanta m-2s-1. Rates also increased as light intensity increased (from 3 to 20 µmol quanta m-2s-1), while the addition of Si did not significantly change Fe(II) oxidation rates. These results elaborate on how the physical and chemical conditions present in the Precambrian ocean controlled the activity of marine photoferrotrophs and confirm the possibility that such microorganisms could have oxidized Fe(II), generating the primary Fe(III) min- erals that were then deposited to some Precambrian BIFs.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Zusätzliche Informationen: BAYCEER135388
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften > Heisenberg-Professur Experimentelle Biogeochemie
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften > Heisenberg-Professur Experimentelle Biogeochemie > Heisenberg-Professur Experimentelle Biogeochemie - Univ.-Prof. Dr. Martin Obst
Forschungseinrichtungen
Forschungseinrichtungen > Forschungszentren
Forschungseinrichtungen > Forschungszentren > Bayreuther Zentrum für Ökologie und Umweltforschung - BayCEER
Fakultäten
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik
500 Naturwissenschaften und Mathematik > 550 Geowissenschaften, Geologie
Eingestellt am: 13 Aug 2020 08:40
Letzte Änderung: 28 Nov 2022 13:21
URI: https://eref.uni-bayreuth.de/id/eprint/56468