Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

From local spectral species to global spectral communities : A benchmark for ecosystem diversity estimate by remote sensing

Titelangaben

Rocchini, Duccio ; Salvatori, Nicole ; Beierkuhnlein, Carl ; Chiarucci, Alessandro ; de Boissieu, Florian ; Förster, Michael ; Garzon-Lopez, Carol X. ; Gillespie, Thomas W. ; Hauffe, Heidi C. ; He, Kate S. ; Kleinschmit, Birgit ; Lenoir, Jonathan ; Malavasi, Marco ; Moudrý, Vítĕzslav ; Nagendra, Harini ; Payne, Davnah ; Šímová, Petra ; Torresani, Michele ; Wegmann, Martin ; Féret, Jean-Baptiste:
From local spectral species to global spectral communities : A benchmark for ecosystem diversity estimate by remote sensing.
In: Ecological Informatics. Bd. 61 (2021) . - 101195.
ISSN 1574-9541
DOI: https://doi.org/10.1016/j.ecoinf.2020.101195

Abstract

In the light of unprecedented change in global biodiversity, real-time and accurate ecosystem and biodiversity assessments are becoming increasingly essential. Nevertheless, estimation of biodiversity using ecological field data can be difficult for several reasons. For instance, for very large areas, it is challenging to collect data that provide reliable information. Some of these restrictions in Earth observation can be avoided through the use of remote sensing approaches. Various studies have estimated biodiversity on the basis of the Spectral Variation Hypothesis (SVH). According to this hypothesis, spectral heterogeneity over the different pixel units of a spatial grid reflects a higher niche heterogeneity, allowing more organisms to coexist. Recently, the spectral species concept has been derived, following the consideration that spectral heterogeneity at a landscape scale corresponds to a combination of subspaces sharing a similar spectral signature. With the use of high resolution remote sensing data, on a local scale, these subspaces can be identified as separate spectral entities, the so called “spectral species”. Our approach extends this concept over wide spatial extents and to a higher level of biological organization. We applied this method to MODIS imagery data across Europe. Obviously, in this case, a spectral species identified by MODIS is not associated to a single plant species in the field but rather to a species assemblage, habitat, or ecosystem. Based on such spectral information, we propose a straightforward method to derive α- (local relative abundance and richness of spectral species) and β-diversity (turnover of spectral species) maps over wide geographical areas.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: Biodiversity; Ecological informatics; Modelling; Remote sensing; Satellite imagery
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften > Lehrstuhl Biogeographie
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften > Lehrstuhl Biogeographie > Lehrstuhl Biogeographie - Univ.-Prof. Dr. Carl Beierkuhnlein
Fakultäten
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften, Geologie
500 Naturwissenschaften und Mathematik > 580 Pflanzen (Botanik)
500 Naturwissenschaften und Mathematik > 590 Tiere (Zoologie)
Eingestellt am: 08 Mär 2021 10:09
Letzte Änderung: 06 Aug 2024 07:13
URI: https://eref.uni-bayreuth.de/id/eprint/63712