Title data
Wiese, Jonas Gregor ; Shanmugaratnam, Sooruban ; Höcker, Birte:
Extension of a de novo TIM barrel with a rationally designed secondary structure element.
In: Protein Science.
Vol. 30
(2021)
Issue 5
.
- pp. 982-989.
ISSN 1469-896X
DOI: https://doi.org/10.1002/pro.4064
Abstract in another language
The ability to construct novel enzymes is a major aim in de novo protein design. A popular enzyme fold for design attempts is the TIM barrel. This fold is a common topology for enzymes and can harbor many diverse reactions. The recent de novo design of a four-fold symmetric TIM barrel provides a well understood minimal scaffold for potential enzyme designs. Here we explore opportunities to extend and diversify this scaffold by adding a short de novo helix on top of the barrel. Due to the size of the protein, we developed a design pipeline based on computational ab initio folding that solves a less complex sub-problem focused around the helix and its vicinity and adapt it to the entire protein. We provide biochemical characterization and a high-resolution X-ray structure for one variant and compare it to our design model. The successful extension of this robust TIM-barrel scaffold opens opportunities to diversify it towards more pocket like arrangements and as such can be considered a building block for future design of binding or catalytic sites.
Further data
Item Type: | Article in a journal |
---|---|
Refereed: | Yes |
Keywords: | (βα)8-barrel; TIM barrel; ab initio folding; computational protein design; enzyme design; sTIM11 |
Institutions of the University: | Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Biochemistry > Chair Biochemistry - Univ.-Prof. Dr. Birte Höcker Faculties Faculties > Faculty of Biology, Chemistry and Earth Sciences Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Biochemistry |
Result of work at the UBT: | Yes |
DDC Subjects: | 500 Science > 500 Natural sciences 500 Science > 570 Life sciences, biology |
Date Deposited: | 13 Apr 2021 11:17 |
Last Modified: | 05 Sep 2022 12:02 |
URI: | https://eref.uni-bayreuth.de/id/eprint/64704 |